Abstract:
We propose a method for constructing classes of real systems of differential equations of order $2^d$ ($d\ge1$), including polynomial systems, in which for all sufficiently small positive values of the parameter a bifurcation from the point of equilibrium to invariant tori of dimension $2^d-1$ occurs.
\Bibitem{Bas01}
\by V.~V.~Basov
\paper Bifurcation of Invariant Tori of Codimension One
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 1
\pages 3--17
\mathnet{http://mi.mathnet.ru/mzm479}
\crossref{https://doi.org/10.4213/mzm479}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1830978}
\zmath{https://zbmath.org/?q=an:1192.37070}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 1
\pages 3--16
\crossref{https://doi.org/10.1023/A:1002888709793}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000168619500001}
Linking options:
https://www.mathnet.ru/eng/mzm479
https://doi.org/10.4213/mzm479
https://www.mathnet.ru/eng/mzm/v69/i1/p3
This publication is cited in the following 2 articles:
Basov V.V. Zhukov A.S., “Invariant Surfaces of Periodic Systems With Conservative Cubic First Approximation”, Vestn. St Petersb. Univ.-Math., 52:3 (2019), 244–258
V. V. Basov, “Bifurcation of the Point of Equilibrium in Systems with Zero Roots of the Characteristic Equation”, Math. Notes, 75:3 (2004), 297–314