Abstract:
We obtain conditions for the nonexistence of global solutions and estimates of existence time for local solutions to the problem
dkydtk⩾a1(t)|y|q1+a2(t)|y|q2+⋯+an(t)|y|qn.
The proofs are based on the method of trial functions developed by Mitidieri and Pokhozhaev.
Citation:
J. Hay, “On Necessary Conditions for the Existence of Local Solutions to Singular Nonlinear Ordinary Differential Equations and Inequalities”, Mat. Zametki, 72:6 (2002), 924–935; Math. Notes, 72:6 (2002), 847–857
\Bibitem{Hay02}
\by J.~Hay
\paper On Necessary Conditions for the Existence of Local Solutions to Singular Nonlinear Ordinary Differential Equations and Inequalities
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 6
\pages 924--935
\mathnet{http://mi.mathnet.ru/mzm478}
\crossref{https://doi.org/10.4213/mzm478}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1964150}
\zmath{https://zbmath.org/?q=an:1048.34013}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 6
\pages 847--857
\crossref{https://doi.org/10.1023/A:1021498114996}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180090200029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141514001}
Linking options:
https://www.mathnet.ru/eng/mzm478
https://doi.org/10.4213/mzm478
https://www.mathnet.ru/eng/mzm/v72/i6/p924
This publication is cited in the following 6 articles:
Xiaohong Li, Haitao Wan, Xiliang Li, “Absence of Solutions for a System of Ordinary Differential Inequalities”, Math. Notes, 109:4 (2021), 600–608
Korpusov M., Ovchinnikov A., Sveshnikov A., Yushkov E., “Blow-Up in Nonlinear Equations of Mathematical Physics: Theory and Methods”, Blow-Up in Nonlinear Equations of Mathematical Physics: Theory and Methods, de Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter Gmbh, 2018, 1–326
Galakhov E.I., “On the Solvability of Nonlinear Differential Inequalities with Singular Coefficients”, Differ. Equ., 49:1 (2013), 45–58
E. I. Galakhov, “On higher order elliptic and parabolic inequalities with singularities on the boundary”, Proc. Steklov Inst. Math., 269 (2010), 76–84
E. I. Galakhov, “Elliptic and parabolic inequalities with point singularities on the boundary”, Sb. Math., 200:10 (2009), 1417–1437
E. I. Galakhov, “On Differential Inequalities with Point Singularities on the Boundary”, Proc. Steklov Inst. Math., 260 (2008), 112–122