Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 72, Issue 6, Pages 892–908
DOI: https://doi.org/10.4213/mzm475
(Mi mzm475)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the Decay of Infinite Products of Trigonometric Polynomials

V. Yu. Protasov

M. V. Lomonosov Moscow State University
Full-text PDF (276 kB) Citations (4)
References:
Abstract: We consider infinite products of the form f(ξ)=k=1mk(2kξ), where {mk} is an arbitrary sequence of trigonometric polynomials of degree at most n with uniformly bounded norms such that mk(0)=1 for all k. We show that f(ξ) can decrease at infinity not faster than O(ξn) and present conditions under which this maximal decay is attained. This result can be applied to the theory of nonstationary wavelets and nonstationary subdivision schemes. In particular, it restricts the smoothness of nonstationary wavelets by the length of their support. This also generalizes well-known similar results obtained for stable sequences of polynomials (when all mk coincide). By means of several examples, we show that by weakening the boundedness conditions one can achieve exponential decay.
Received: 25.07.2001
Revised: 29.04.2002
English version:
Mathematical Notes, 2002, Volume 72, Issue 6, Pages 819–832
DOI: https://doi.org/10.1023/A:1021442030017
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. Yu. Protasov, “On the Decay of Infinite Products of Trigonometric Polynomials”, Mat. Zametki, 72:6 (2002), 892–908; Math. Notes, 72:6 (2002), 819–832
Citation in format AMSBIB
\Bibitem{Pro02}
\by V.~Yu.~Protasov
\paper On the Decay of Infinite Products of Trigonometric Polynomials
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 6
\pages 892--908
\mathnet{http://mi.mathnet.ru/mzm475}
\crossref{https://doi.org/10.4213/mzm475}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1964147}
\zmath{https://zbmath.org/?q=an:1023.42002}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 6
\pages 819--832
\crossref{https://doi.org/10.1023/A:1021442030017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180090200026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141848662}
Linking options:
  • https://www.mathnet.ru/eng/mzm475
  • https://doi.org/10.4213/mzm475
  • https://www.mathnet.ru/eng/mzm/v72/i6/p892
  • This publication is cited in the following 4 articles:
    1. E. D. Alferova, V. B. Sherstyukov, “Calculation of the Limit of a Special Sequence of Trigonometric Functions”, Math. Notes, 115:2 (2024), 269–274  mathnet  crossref  crossref  mathscinet
    2. Charina M., Protasov V.Yu., “Analytic Functions in Local Shift-Invariant Spaces and Analytic Limits of Level Dependent Subdivision”, J. Fourier Anal. Appl., 27:3 (2021), 45  crossref  mathscinet  isi  scopus
    3. Charina M., Conti C., Guglielmi N., Protasov V., “Regularity of non-stationary subdivision: a matrix approach”, Numer. Math., 135:3 (2017), 639–678  crossref  mathscinet  zmath  isi  scopus
    4. Dyn N. Kounchev O. Levin D. Render H., “Regularity of Generalized Daubechies Wavelets Reproducing Exponential Polynomials With Real-Valued Parameters”, Appl. Comput. Harmon. Anal., 37:2 (2014), 288–306  crossref  mathscinet  zmath  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:489
    Full-text PDF :250
    References:84
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025