Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2012, Volume 92, Issue 5, Pages 778–785
DOI: https://doi.org/10.4213/mzm4739
(Mi mzm4739)
 

This article is cited in 2 scientific papers (total in 2 papers)

Solution of an Algebraic Equation Using an Irrational Iteration Function

L. S. Chkhartishvili

Georgian Technical University
Full-text PDF (423 kB) Citations (2)
References:
Abstract: It is proved that, for the choice z[0]n=a1z[0]n=a1 of the initial approximation, the sequence of approximations z[i+1]n=φn(z[i]n)z[i+1]n=φn(z[i]n), [i]=0,1,2,[i]=0,1,2,, of a solution of every canonical algebraic equation with real positive roots which is of the form
Pn(z)=zn+a1zn1+a2zn2++an=0,n=1,2,,Pn(z)=zn+a1zn1+a2zn2++an=0,n=1,2,,
where the sequence is generated by the irrational iteration function φn(z)=(znPn(z))1/nφn(z)=(znPn(z))1/n, converges to the largest root znzn. Examples of numerical realization of the method for the problem of determining the energy levels of electron systems in a molecule and in a crystal are presented. The possibility of constructing similar irrational iteration functions in order to solve an algebraic equation of general form is considered.
Keywords: canonical algebraic equation, largest root, irrational iteration, electron system in molecules and crystals, method of divided differences.
Received: 15.01.2012
English version:
Mathematical Notes, 2012, Volume 92, Issue 5, Pages 714–719
DOI: https://doi.org/10.1134/S0001434612110132
Bibliographic databases:
Document Type: Article
UDC: 519.61+539.2
Language: Russian
Citation: L. S. Chkhartishvili, “Solution of an Algebraic Equation Using an Irrational Iteration Function”, Mat. Zametki, 92:5 (2012), 778–785; Math. Notes, 92:5 (2012), 714–719
Citation in format AMSBIB
\Bibitem{Chk12}
\by L.~S.~Chkhartishvili
\paper Solution of an Algebraic Equation Using an Irrational Iteration Function
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 5
\pages 778--785
\mathnet{http://mi.mathnet.ru/mzm4739}
\crossref{https://doi.org/10.4213/mzm4739}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201479}
\zmath{https://zbmath.org/?q=an:1269.30040}
\elib{https://elibrary.ru/item.asp?id=20731633}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 5
\pages 714--719
\crossref{https://doi.org/10.1134/S0001434612110132}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314263900013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871836350}
Linking options:
  • https://www.mathnet.ru/eng/mzm4739
  • https://doi.org/10.4213/mzm4739
  • https://www.mathnet.ru/eng/mzm/v92/i5/p778
  • This publication is cited in the following 2 articles:
    1. Chkhartishvili L., “How to Calculate Condensed Matter Electronic Structure Based on Multi-Electron Atom Semi-Classical Model”, Condens. Matter, 6:4 (2021), 46  crossref  isi
    2. Levan Chkhartishvili, “On Semi-Classical Approach to Materials Electronic Structure”, J. Mater. Sci. Technol. Res., 8 (2021), 41  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:403
    Full-text PDF :227
    References:70
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025