Abstract:
It is proved that, for the choice z[0]n=−a1z[0]n=−a1 of the initial approximation, the sequence of approximations z[i+1]n=φn(z[i]n)z[i+1]n=φn(z[i]n), [i]=0,1,2,…[i]=0,1,2,…, of a solution of every canonical algebraic equation with real positive roots which is of the form
Pn(z)=zn+a1zn−1+a2zn−2+⋯+an=0,n=1,2,…,Pn(z)=zn+a1zn−1+a2zn−2+⋯+an=0,n=1,2,…,
where the sequence is generated by the irrational iteration function φn(z)=(zn−Pn(z))1/nφn(z)=(zn−Pn(z))1/n, converges to the largest root znzn. Examples of numerical realization of the method for the problem of determining the energy levels of electron systems in a molecule and in a crystal are presented. The possibility of constructing similar irrational iteration functions in order to solve an algebraic equation of general form is considered.
Keywords:
canonical algebraic equation, largest root, irrational iteration, electron system in molecules and crystals, method of divided differences.
Citation:
L. S. Chkhartishvili, “Solution of an Algebraic Equation Using an Irrational Iteration Function”, Mat. Zametki, 92:5 (2012), 778–785; Math. Notes, 92:5 (2012), 714–719
\Bibitem{Chk12}
\by L.~S.~Chkhartishvili
\paper Solution of an Algebraic Equation Using an Irrational Iteration Function
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 5
\pages 778--785
\mathnet{http://mi.mathnet.ru/mzm4739}
\crossref{https://doi.org/10.4213/mzm4739}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201479}
\zmath{https://zbmath.org/?q=an:1269.30040}
\elib{https://elibrary.ru/item.asp?id=20731633}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 5
\pages 714--719
\crossref{https://doi.org/10.1134/S0001434612110132}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314263900013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871836350}
Linking options:
https://www.mathnet.ru/eng/mzm4739
https://doi.org/10.4213/mzm4739
https://www.mathnet.ru/eng/mzm/v92/i5/p778
This publication is cited in the following 2 articles:
Chkhartishvili L., “How to Calculate Condensed Matter Electronic Structure Based on Multi-Electron Atom Semi-Classical Model”, Condens. Matter, 6:4 (2021), 46
Levan Chkhartishvili, “On Semi-Classical Approach to Materials Electronic Structure”, J. Mater. Sci. Technol. Res., 8 (2021), 41