Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 87, Issue 2, Pages 294–304
DOI: https://doi.org/10.4213/mzm4735
(Mi mzm4735)
 

This article is cited in 1 scientific paper (total in 1 paper)

Convergence Parameter Associated with a Markov Chain and a Family of Functions

M. G. Shur

Moscow State Institute of Electronics and Mathematics (Technical University)
Full-text PDF (489 kB) Citations (1)
References:
Abstract: The proposed definition of convergence parameter $R(W)$ corresponding to a Markov chain $X$ with a measurable state space $(E,\mathscr B)$ and any nonempty set $W$ of bounded below measurable functions $f\colon E\to\mathbb R$ is wider than the well-known definition of convergence parameter $R$ in the sense of Tweedie or Nummelin. Very often, $R(W)<\infty$, and there exists a set playing the role of the absorbing set in Nummelin's definition of $R$. Special attention is paid to the case in which $E$ is locally compact, $X$ is a Feller chain on $E$, and $W$ coincides with the family $\mathscr C_0^+$ of all compactly supported continuous functions $f\ge 0$ ($f\not\equiv 0$). In particular, certain conditions for $R(\mathscr C_0^+)^{-1}$ to coincide with the norm of an appropriate modification of the chain transition operator are found.
Keywords: convergence parameter, Markov chain, absorbing set, locally compact set, random walk, irreducible chains, Feller chain, measurable state space.
Received: 04.04.2008
English version:
Mathematical Notes, 2010, Volume 87, Issue 2, Pages 271–280
DOI: https://doi.org/10.1134/S0001434610010347
Bibliographic databases:
UDC: 519.217.2
Language: Russian
Citation: M. G. Shur, “Convergence Parameter Associated with a Markov Chain and a Family of Functions”, Mat. Zametki, 87:2 (2010), 294–304; Math. Notes, 87:2 (2010), 271–280
Citation in format AMSBIB
\Bibitem{Shu10}
\by M.~G.~Shur
\paper Convergence Parameter Associated with a Markov Chain and a Family of Functions
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 2
\pages 294--304
\mathnet{http://mi.mathnet.ru/mzm4735}
\crossref{https://doi.org/10.4213/mzm4735}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2731480}
\zmath{https://zbmath.org/?q=an:05791046}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 2
\pages 271--280
\crossref{https://doi.org/10.1134/S0001434610010347}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276064800034}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949994542}
Linking options:
  • https://www.mathnet.ru/eng/mzm4735
  • https://doi.org/10.4213/mzm4735
  • https://www.mathnet.ru/eng/mzm/v87/i2/p294
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:518
    Full-text PDF :196
    References:65
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024