Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 72, Issue 6, Pages 853–868
DOI: https://doi.org/10.4213/mzm472
(Mi mzm472)
 

This article is cited in 4 scientific papers (total in 4 papers)

Sequential Reflexive Logics with Noncontingency Operator

E. E. Zolin

M. V. Lomonosov Moscow State University
Full-text PDF (264 kB) Citations (4)
References:
Abstract: Hilbert systems $L^\vartriangleright$ and sequential calculi $[L^\vartriangleright]$ for the versions of logics $L=\mathbf T,\mathbf {S4},\mathbf B,\mathbf {S5}$, and $\mathbf {Grz}$ stated in a language with the single modal noncontingency operator $\vartriangleright A=\square A\vee \square \neg A$ are constructed. It is proved that cut is not eliminable in the calculi $[L^\vartriangleright]$, but we can restrict ourselves to analytic cut preserving the subformula property. Thus the calculi $[\mathbf T^\vartriangleright]$, $[\mathbf {S4}^\vartriangleright]$, $[\mathbf {S5}^\vartriangleright ]$ ($[\mathbf {Grz}^\vartriangleright]$, respectively) satisfy the (weak, respectively) subformula property; for $[\mathbf B_2^\vartriangleright]$, this question remains open. For the noncontingency logics in question, the Craig interpolation property is established.
Received: 26.10.2000
English version:
Mathematical Notes, 2002, Volume 72, Issue 6, Pages 784–798
DOI: https://doi.org/10.1023/A:1021485712270
Bibliographic databases:
UDC: 510.653
Language: Russian
Citation: E. E. Zolin, “Sequential Reflexive Logics with Noncontingency Operator”, Mat. Zametki, 72:6 (2002), 853–868; Math. Notes, 72:6 (2002), 784–798
Citation in format AMSBIB
\Bibitem{Zol02}
\by E.~E.~Zolin
\paper Sequential Reflexive Logics with Noncontingency Operator
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 6
\pages 853--868
\mathnet{http://mi.mathnet.ru/mzm472}
\crossref{https://doi.org/10.4213/mzm472}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1964144}
\zmath{https://zbmath.org/?q=an:1027.03016}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 6
\pages 784--798
\crossref{https://doi.org/10.1023/A:1021485712270}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180090200023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141514004}
Linking options:
  • https://www.mathnet.ru/eng/mzm472
  • https://doi.org/10.4213/mzm472
  • https://www.mathnet.ru/eng/mzm/v72/i6/p853
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:358
    Full-text PDF :188
    References:48
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024