Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1992, Volume 52, Issue 3, Pages 123–129 (Mi mzm4708)  

This article is cited in 2 scientific papers (total in 2 papers)

Equivalence of $K$-functional and modulus of smoothness of functions on the sphere

Kh. P. Rustamov

Institute of Applied Mathematics and Mechanics AS of AzSSR
Abstract: In the present note certain fundamental estimates of the constructive theory of functions on the sphere $S^n\subset\mathbf{R}^{n+1}$, $n\geqslant1$, are sharpened on the basis of the equivalence of the $K$-functional and the modulus of smoothness of functions. In particular a Bernshtein-type inequality for spherical polynomials is made more precise. The estimates obtained are applied to deduce a membership criterion for the function f $f\in L_p(S^n)$, $1\leqslant p\leqslant\infty$, to the space $H_r^{\omega}L_p(S^n)$ depending on the growth of the norm of derivatives of best approximation polynomials of the function $f$, which is an analog of a result found by S. B. Stechkin related to continuous periodic functions.
Received: 04.03.1988
English version:
Mathematical Notes, 1992, Volume 52, Issue 3, Pages 965–970
DOI: https://doi.org/10.1007/BF01209618
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: Kh. P. Rustamov, “Equivalence of $K$-functional and modulus of smoothness of functions on the sphere”, Mat. Zametki, 52:3 (1992), 123–129; Math. Notes, 52:3 (1992), 965–970
Citation in format AMSBIB
\Bibitem{Rus92}
\by Kh.~P.~Rustamov
\paper Equivalence of $K$-functional and modulus of smoothness of functions on the sphere
\jour Mat. Zametki
\yr 1992
\vol 52
\issue 3
\pages 123--129
\mathnet{http://mi.mathnet.ru/mzm4708}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1194136}
\zmath{https://zbmath.org/?q=an:0794.41018}
\transl
\jour Math. Notes
\yr 1992
\vol 52
\issue 3
\pages 965--970
\crossref{https://doi.org/10.1007/BF01209618}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992LF91500014}
Linking options:
  • https://www.mathnet.ru/eng/mzm4708
  • https://www.mathnet.ru/eng/mzm/v52/i3/p123
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024