Abstract:
Under certain assumptions on the regularity of a function Φ necessary and sufficient conditions are found for Φ under which the integrability of Φ(|f|) implies, for every function f measurable on Td, the existence of a subsequence of cubic sums of the Fourier series of f that converges to f in mean or almost everywhere.
Citation:
S. V. Konyagin, “Convergence of subsequences of partial cubic sums of Fourier series in mean and almost everywhere”, Mat. Zametki, 52:3 (1992), 63–77; Math. Notes, 52:3 (1992), 918–930
\Bibitem{Kon92}
\by S.~V.~Konyagin
\paper Convergence of subsequences of partial cubic sums of Fourier series in mean and almost everywhere
\jour Mat. Zametki
\yr 1992
\vol 52
\issue 3
\pages 63--77
\mathnet{http://mi.mathnet.ru/mzm4701}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1194129}
\zmath{https://zbmath.org/?q=an:0789.42007}
\transl
\jour Math. Notes
\yr 1992
\vol 52
\issue 3
\pages 918--930
\crossref{https://doi.org/10.1007/BF01209611}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992LF91500007}
Linking options:
https://www.mathnet.ru/eng/mzm4701
https://www.mathnet.ru/eng/mzm/v52/i3/p63
This publication is cited in the following 1 articles:
B. S. Kashin, Yu. V. Malykhin, V. Yu. Protasov, K. S. Ryutin, I. D. Shkredov, “Sergei Vladimirovich Konyagin turns 60”, Proc. Steklov Inst. Math., 303 (2018), 1–9