Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 72, Issue 6, Pages 828–833
DOI: https://doi.org/10.4213/mzm470
(Mi mzm470)
 

This article is cited in 3 scientific papers (total in 3 papers)

Certain Diophantine Properties of the Mahler Measure

A. Dubickas

Vilnius University
Full-text PDF (171 kB) Citations (3)
References:
Abstract: It is proved that a polynomial in several Mahler measures with positive rational coefficients is equal to an integer if and only if all these Mahler measures are integers. An estimate for the distance between a metric Mahler measure and an integer is obtained. Finally, it is proved that the ratio of two distinct Mahler measures of algebraic units is irrational.
Received: 27.06.2001
Revised: 26.02.2002
English version:
Mathematical Notes, 2002, Volume 72, Issue 6, Pages 763–767
DOI: https://doi.org/10.1023/A:1021481611362
Bibliographic databases:
UDC: 511
Language: Russian
Citation: A. Dubickas, “Certain Diophantine Properties of the Mahler Measure”, Mat. Zametki, 72:6 (2002), 828–833; Math. Notes, 72:6 (2002), 763–767
Citation in format AMSBIB
\Bibitem{Dub02}
\by A.~Dubickas
\paper Certain Diophantine Properties of the Mahler Measure
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 6
\pages 828--833
\mathnet{http://mi.mathnet.ru/mzm470}
\crossref{https://doi.org/10.4213/mzm470}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1964142}
\zmath{https://zbmath.org/?q=an:1035.11052}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 6
\pages 763--767
\crossref{https://doi.org/10.1023/A:1021481611362}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180090200021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141737058}
Linking options:
  • https://www.mathnet.ru/eng/mzm470
  • https://doi.org/10.4213/mzm470
  • https://www.mathnet.ru/eng/mzm/v72/i6/p828
  • This publication is cited in the following 3 articles:
    1. Friedl S., “Commensurability of Knots and l-2-Invariants”, Geometry and Topology Down Under, Contemporary Mathematics, 597, eds. Hodgson C., Jaco W., Scharlemann M., Tillmann S., Amer Mathematical Soc, 2013, 263–279  crossref  zmath  isi
    2. Wu Q., “The Smallest Perron Numbers”, Math. Comput., 79:272 (2010), 2387–2394  crossref  mathscinet  zmath  isi  scopus  scopus
    3. Dubickas A., “On numbers which are Mahler measures”, Monatsh. Math., 141:2 (2004), 119–126  crossref  mathscinet  zmath  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:295
    Full-text PDF :191
    References:43
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025