Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 72, Issue 5, Pages 765–795
DOI: https://doi.org/10.4213/mzm466
(Mi mzm466)
 

This article is cited in 23 scientific papers (total in 23 papers)

Approximation Properties of the Operators $\mathscr Y_{n+2r}(f)$ and of Their Discrete Analogs

I. I. Sharapudinov

Daghestan State Pedagogical University
References:
Abstract: This paper is devoted to the study of the approximation properties of linear operators which are partial Fourier–Legendre sums of order $n$ with $2r$ terms of the form $\sum _{k=1}^{2r}a_kP_{n+k}(x)$ added; here $P_m(x)$ denotes the Legendre polynomial. Due to this addition, the linear operators interpolate functions and their derivatives at the endpoints of the closed interval $[-1,1]$, which, in fact, for $r=1$ allows us to significantly improve the approximation properties of partial Fourier–Legendre sums. It is proved that these operators realize order-best uniform algebraic approximation of the classes of functions $W_rH_{L_2}^\mu $ and $A_q(B)$. With the aim of the computational realization of these operators, we construct their discrete analogs by means of Chebyshev polynomials, orthogonal on a uniform grid, also possessing nice approximation properties.
Received: 20.04.2001
English version:
Mathematical Notes, 2002, Volume 72, Issue 5, Pages 705–732
DOI: https://doi.org/10.1023/A:1021421425474
Bibliographic databases:
UDC: 517.518.8
Language: Russian
Citation: I. I. Sharapudinov, “Approximation Properties of the Operators $\mathscr Y_{n+2r}(f)$ and of Their Discrete Analogs”, Mat. Zametki, 72:5 (2002), 765–795; Math. Notes, 72:5 (2002), 705–732
Citation in format AMSBIB
\Bibitem{Sha02}
\by I.~I.~Sharapudinov
\paper Approximation Properties of the Operators $\mathscr Y_{n+2r}(f)$ and of Their Discrete Analogs
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 5
\pages 765--795
\mathnet{http://mi.mathnet.ru/mzm466}
\crossref{https://doi.org/10.4213/mzm466}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1963140}
\zmath{https://zbmath.org/?q=an:1021.41010}
\elib{https://elibrary.ru/item.asp?id=13397986}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 5
\pages 705--732
\crossref{https://doi.org/10.1023/A:1021421425474}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180090200016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141625264}
Linking options:
  • https://www.mathnet.ru/eng/mzm466
  • https://doi.org/10.4213/mzm466
  • https://www.mathnet.ru/eng/mzm/v72/i5/p765
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024