Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1992, Volume 52, Issue 1, Pages 87–93 (Mi mzm4659)  

Generalization of the Hardy–Littlewood theorem on functions with derivatives in the space $H_1$

A. A. Pekarskii

Yanka Kupala State University of Grodno
Abstract: Suppose $f$ is a function that is analytic in the disk $D=\{z:|z|<1\}$ and belongs to the Hardy space $H_1$. Then, by the Hardy–Littlewood theorem, the following conditions are equivalent: (a) $f'\in H_1$; (b) $f$ coincides with some function of bounded variation almost everywhere on $\partial D$; (c) almost everywhere on $\partial D$, the function $f$ coincides with some absolutely continuous function; (d) for an integral modulus of continuity $f-\omega(f,\delta)$ for the function $f$, we have $\omega(f,\delta)=O(\delta)$. This article presents a generalization of this theorem to higher derivatives in the space $H_p$. The notions of generalized absolute continuity, generalized variation, and higher-order moduli of smoothness are used for this purpose.
Received: 17.12.1991
English version:
Mathematical Notes, 1992, Volume 52, Issue 1, Pages 695–700
DOI: https://doi.org/10.1007/BF01247652
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. A. Pekarskii, “Generalization of the Hardy–Littlewood theorem on functions with derivatives in the space $H_1$”, Mat. Zametki, 52:1 (1992), 87–93; Math. Notes, 52:1 (1992), 695–700
Citation in format AMSBIB
\Bibitem{Pek92}
\by A.~A.~Pekarskii
\paper Generalization of the Hardy--Littlewood theorem on functions with derivatives in the space~$H_1$
\jour Mat. Zametki
\yr 1992
\vol 52
\issue 1
\pages 87--93
\mathnet{http://mi.mathnet.ru/mzm4659}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1187718}
\zmath{https://zbmath.org/?q=an:0787.30021|0770.30032}
\transl
\jour Math. Notes
\yr 1992
\vol 52
\issue 1
\pages 695--700
\crossref{https://doi.org/10.1007/BF01247652}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992LC62500013}
Linking options:
  • https://www.mathnet.ru/eng/mzm4659
  • https://www.mathnet.ru/eng/mzm/v52/i1/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:225
    Full-text PDF :106
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024