Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1992, Volume 52, Issue 1, Pages 62–67 (Mi mzm4656)  

Phragmen–Lindelöf theorems for second-order semilinear equations with nonnegative characteristic form

V. V. Kurta

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
Abstract: This article considers the qualitative properties of generalized (in the sense of an integral identity) solutions of equations of the form $Lu=f(x,u)$, where $L$ is a second-order linear homogeneous divergence operator with nonnegative characteristic form and bounded measurable coefficients, while $f(x,u)$ is a locally bounded (in $\mathbf{R}^{n+1}$) function such that $f(x,0)=0$, $uf(x,u)\geqslant a|u|^{1+q}$, $a>0$, $q\geqslant0$, $n\geqslant2$. The results of the article are a characterization of the behavior of solutions to the Dirichlet problem for the equation $Lu=f(x,u)$ in unbounded domains as a function of the geometric properties of the domains and the quantity $0\leqslant q<1$. The apparatus of capacity characteristics plays a fundamental role in the approach used here.
Received: 05.12.1991
English version:
Mathematical Notes, 1992, Volume 52, Issue 1, Pages 676–680
DOI: https://doi.org/10.1007/BF01247649
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: V. V. Kurta, “Phragmen–Lindelöf theorems for second-order semilinear equations with nonnegative characteristic form”, Mat. Zametki, 52:1 (1992), 62–67; Math. Notes, 52:1 (1992), 676–680
Citation in format AMSBIB
\Bibitem{Kur92}
\by V.~V.~Kurta
\paper Phragmen--Lindel\"of theorems for second-order semilinear equations with nonnegative characteristic form
\jour Mat. Zametki
\yr 1992
\vol 52
\issue 1
\pages 62--67
\mathnet{http://mi.mathnet.ru/mzm4656}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1187715}
\zmath{https://zbmath.org/?q=an:0829.35007}
\transl
\jour Math. Notes
\yr 1992
\vol 52
\issue 1
\pages 676--680
\crossref{https://doi.org/10.1007/BF01247649}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992LC62500010}
Linking options:
  • https://www.mathnet.ru/eng/mzm4656
  • https://www.mathnet.ru/eng/mzm/v52/i1/p62
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:191
    Full-text PDF :84
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024