Abstract:
It is well known that the least possible type from the class of entire functions of prescribed order $\rho$ with upper root density 1 (for the exponent $\rho$) is $1/(e\rho)$. The author has proved that if all the roots of entire functions lie on one ray, then the situation is different: the least type for such a class on the set of orders $(1,+\infty)\setminus\mathbb N$ is distinct from zero and is bounded above.
Keywords:
entire function, least type of an entire function, upper density of a sequence, Lindelöf theorem.
Citation:
A. Yu. Popov, “On the Least Type of an Entire Function of Order $\rho$ with Roots of a Given Upper $\rho$-Density Lying on One Ray”, Mat. Zametki, 85:2 (2009), 246–260; Math. Notes, 85:2 (2009), 226–239
\Bibitem{Pop09}
\by A.~Yu.~Popov
\paper On the Least Type of an Entire Function of Order~$\rho$ with Roots of a Given Upper $\rho$-Density Lying on One Ray
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 2
\pages 246--260
\mathnet{http://mi.mathnet.ru/mzm4645}
\crossref{https://doi.org/10.4213/mzm4645}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2548004}
\zmath{https://zbmath.org/?q=an:1177.30037}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 2
\pages 226--239
\crossref{https://doi.org/10.1134/S000143460901026X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264327200026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-62949158113}
Linking options:
https://www.mathnet.ru/eng/mzm4645
https://doi.org/10.4213/mzm4645
https://www.mathnet.ru/eng/mzm/v85/i2/p246
This publication is cited in the following 11 articles:
G. G. Braichev, V. B. Sherstyukov, “On Indicator and Type of an Entire Function with Roots Lying on a Ray”, Lobachevskii J Math, 43:3 (2022), 539
G. G. Braichev, “On the Lower Indicator of an Entire Function
with Roots of Zero Lower Density Lying on a Ray”, Math. Notes, 107:6 (2020), 907–919
G. G. Braichev, V. B. Sherstyukov, “Otsenki indikatorov tseloi funktsii s otritsatelnymi kornyami”, Vladikavk. matem. zhurn., 22:3 (2020), 30–46
V. B. Sherstyukov, “Asymptotic properties of entire functions with given laws of distribution of zeros”, J. Math. Sci. (N. Y.), 257:2 (2021), 246–272
G. G. Braichev, V. B. Sherstyukov, “Sharp bounds for asymptotic characteristics of growth of entire functions with zeros on given sets”, J. Math. Sci., 250:3 (2020), 419–453
G. G. Braichev, “Sharp Estimates of Types of Entire Functions with Zeros on Rays”, Math. Notes, 97:4 (2015), 510–520
O. V. Sherstyukova, “O naimenshem tipe tselykh funktsii poryadka $\rho\in(0,1)$ s nulyami na luche”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 15:4 (2015), 433–441
A. Yu. Popov, “Development of the Valiron–Levin theorem on the least possible type of entire functions with a given upper $\rho$-density of roots”, Journal of Mathematical Sciences, 211:4 (2015), 579–616
G. G. Braichev, V. B. Sherstyukov, “On the Growth of Entire Functions with Discretely Measurable Zeros”, Math. Notes, 91:5 (2012), 630–644
Braichev G.G., “Sharp bounds for the type of an entire function of order less than 1 whose zeros are located on a ray and have given averaged densities”, Dokl. Math., 86:1 (2012), 559–561
G. G. Braichev, V. B. Sherstyukov, “On the least possible type of entire functions of order $\rho\in(0,1)$ with positive zeros”, Izv. Math., 75:1 (2011), 1–27