Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 2, Pages 246–260
DOI: https://doi.org/10.4213/mzm4645
(Mi mzm4645)
 

This article is cited in 11 scientific papers (total in 11 papers)

On the Least Type of an Entire Function of Order $\rho$ with Roots of a Given Upper $\rho$-Density Lying on One Ray

A. Yu. Popov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: It is well known that the least possible type from the class of entire functions of prescribed order $\rho$ with upper root density 1 (for the exponent $\rho$) is $1/(e\rho)$. The author has proved that if all the roots of entire functions lie on one ray, then the situation is different: the least type for such a class on the set of orders $(1,+\infty)\setminus\mathbb N$ is distinct from zero and is bounded above.
Keywords: entire function, least type of an entire function, upper density of a sequence, Lindelöf theorem.
Received: 20.03.2008
English version:
Mathematical Notes, 2009, Volume 85, Issue 2, Pages 226–239
DOI: https://doi.org/10.1134/S000143460901026X
Bibliographic databases:
UDC: 517.547.22
Language: Russian
Citation: A. Yu. Popov, “On the Least Type of an Entire Function of Order $\rho$ with Roots of a Given Upper $\rho$-Density Lying on One Ray”, Mat. Zametki, 85:2 (2009), 246–260; Math. Notes, 85:2 (2009), 226–239
Citation in format AMSBIB
\Bibitem{Pop09}
\by A.~Yu.~Popov
\paper On the Least Type of an Entire Function of Order~$\rho$ with Roots of a Given Upper $\rho$-Density Lying on One Ray
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 2
\pages 246--260
\mathnet{http://mi.mathnet.ru/mzm4645}
\crossref{https://doi.org/10.4213/mzm4645}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2548004}
\zmath{https://zbmath.org/?q=an:1177.30037}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 2
\pages 226--239
\crossref{https://doi.org/10.1134/S000143460901026X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264327200026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-62949158113}
Linking options:
  • https://www.mathnet.ru/eng/mzm4645
  • https://doi.org/10.4213/mzm4645
  • https://www.mathnet.ru/eng/mzm/v85/i2/p246
  • This publication is cited in the following 11 articles:
    1. G. G. Braichev, V. B. Sherstyukov, “On Indicator and Type of an Entire Function with Roots Lying on a Ray”, Lobachevskii J Math, 43:3 (2022), 539  crossref
    2. G. G. Braichev, “On the Lower Indicator of an Entire Function with Roots of Zero Lower Density Lying on a Ray”, Math. Notes, 107:6 (2020), 907–919  mathnet  crossref  crossref  mathscinet  isi  elib
    3. G. G. Braichev, V. B. Sherstyukov, “Otsenki indikatorov tseloi funktsii s otritsatelnymi kornyami”, Vladikavk. matem. zhurn., 22:3 (2020), 30–46  mathnet  crossref
    4. V. B. Sherstyukov, “Asymptotic properties of entire functions with given laws of distribution of zeros”, J. Math. Sci. (N. Y.), 257:2 (2021), 246–272  mathnet  crossref  mathscinet
    5. G. G. Braichev, V. B. Sherstyukov, “Sharp bounds for asymptotic characteristics of growth of entire functions with zeros on given sets”, J. Math. Sci., 250:3 (2020), 419–453  mathnet  crossref
    6. G. G. Braichev, “Sharp Estimates of Types of Entire Functions with Zeros on Rays”, Math. Notes, 97:4 (2015), 510–520  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. O. V. Sherstyukova, “O naimenshem tipe tselykh funktsii poryadka $\rho\in(0,1)$ s nulyami na luche”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 15:4 (2015), 433–441  mathnet  crossref  elib
    8. A. Yu. Popov, “Development of the Valiron–Levin theorem on the least possible type of entire functions with a given upper $\rho$-density of roots”, Journal of Mathematical Sciences, 211:4 (2015), 579–616  mathnet  crossref
    9. G. G. Braichev, V. B. Sherstyukov, “On the Growth of Entire Functions with Discretely Measurable Zeros”, Math. Notes, 91:5 (2012), 630–644  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    10. Braichev G.G., “Sharp bounds for the type of an entire function of order less than 1 whose zeros are located on a ray and have given averaged densities”, Dokl. Math., 86:1 (2012), 559–561  crossref  mathscinet  zmath  isi  elib  elib  scopus
    11. G. G. Braichev, V. B. Sherstyukov, “On the least possible type of entire functions of order $\rho\in(0,1)$ with positive zeros”, Izv. Math., 75:1 (2011), 1–27  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:702
    Full-text PDF :256
    References:101
    First page:22
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025