Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 83, Issue 4, Pages 590–605
DOI: https://doi.org/10.4213/mzm4578
(Mi mzm4578)
 

This article is cited in 4 scientific papers (total in 4 papers)

Combinatorial Construction of Tangent Vector Fields on Spheres

A. A. Ohnikyan

Yerevan State University
Full-text PDF (533 kB) Citations (4)
References:
Abstract: For every odd $n$, on the sphere $S^n$, $\rho(n)-1$ linear orthonormal tangent vector fields, where $\rho(n)$ is the Hurwitz–Radon number, are explicitly constructed. For each $8\times8$ sign matrix, compositions for infinite-dimensional positive definite quadratic forms are explicitly constructed. The infinite-dimensional real normed algebras thus arising are proved to have certain properties of associativity and divisibility type.
Keywords: linear orthonormal tangent vector field, odd-dimensional sphere, composition of quadratic forms, Clifford algebra, Hurwitz–Radon theorem, Cayley number.
Received: 28.04.2006
Revised: 22.06.2007
English version:
Mathematical Notes, 2008, Volume 83, Issue 4, Pages 539–553
DOI: https://doi.org/10.1134/S0001434608030279
Bibliographic databases:
UDC: 515.164.322
Language: Russian
Citation: A. A. Ohnikyan, “Combinatorial Construction of Tangent Vector Fields on Spheres”, Mat. Zametki, 83:4 (2008), 590–605; Math. Notes, 83:4 (2008), 539–553
Citation in format AMSBIB
\Bibitem{Ohn08}
\by A.~A.~Ohnikyan
\paper Combinatorial Construction of Tangent Vector Fields on Spheres
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 4
\pages 590--605
\mathnet{http://mi.mathnet.ru/mzm4578}
\crossref{https://doi.org/10.4213/mzm4578}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2431624}
\zmath{https://zbmath.org/?q=an:1169.57026}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 4
\pages 539--553
\crossref{https://doi.org/10.1134/S0001434608030279}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255998600027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43749093013}
Linking options:
  • https://www.mathnet.ru/eng/mzm4578
  • https://doi.org/10.4213/mzm4578
  • https://www.mathnet.ru/eng/mzm/v83/i4/p590
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:435
    Full-text PDF :226
    References:46
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024