Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 83, Issue 4, Pages 503–519
DOI: https://doi.org/10.4213/mzm4573
(Mi mzm4573)
 

This article is cited in 9 scientific papers (total in 9 papers)

Asymptotic Behavior of the Eigenvalues of the Schrödinger Operator in Thin Closed Tubes

V. V. Grushin

Moscow State Institute of Electronics and Mathematics
Full-text PDF (604 kB) Citations (9)
References:
Abstract: In the present paper, we obtain an asymptotic expansion of the eigenvalues of the Schrödinger operator with the magnetic field taken into account and with zero Dirichlet conditions in closed tubes, i.e., in closed curved cylinders with intrinsic torsion under uniform compression of the transverse cross-sections, with respect to a small parameter characterizing the tube's transverse dimensions. We propose a method for reducing the eigenvalue problem to the problem of solving an implicit equation.
Keywords: Schrödinger operator, eigenvalue problem, asymptotics, thin closed tube, small perturbation, Dirichlet condition, Laplace operator.
Received: 17.09.2007
English version:
Mathematical Notes, 2008, Volume 83, Issue 4, Pages 463–477
DOI: https://doi.org/10.1134/S000143460803019X
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: V. V. Grushin, “Asymptotic Behavior of the Eigenvalues of the Schrödinger Operator in Thin Closed Tubes”, Mat. Zametki, 83:4 (2008), 503–519; Math. Notes, 83:4 (2008), 463–477
Citation in format AMSBIB
\Bibitem{Gru08}
\by V.~V.~Grushin
\paper Asymptotic Behavior of the Eigenvalues of the Schr\"odinger Operator in Thin Closed Tubes
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 4
\pages 503--519
\mathnet{http://mi.mathnet.ru/mzm4573}
\crossref{https://doi.org/10.4213/mzm4573}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2431616}
\zmath{https://zbmath.org/?q=an:1152.35452}
\elib{https://elibrary.ru/item.asp?id=10437334}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 4
\pages 463--477
\crossref{https://doi.org/10.1134/S000143460803019X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255998600019}
\elib{https://elibrary.ru/item.asp?id=13596440}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43749112519}
Linking options:
  • https://www.mathnet.ru/eng/mzm4573
  • https://doi.org/10.4213/mzm4573
  • https://www.mathnet.ru/eng/mzm/v83/i4/p503
  • This publication is cited in the following 9 articles:
    1. Haag S., Lampart J., Teufel S., “Quantum Waveguides With Magnetic Fields”, Rev. Math. Phys., 31:8 (2019), 1950025  crossref  mathscinet  isi
    2. Raymond N., “Bound States of the Magnetic Schrodinger Operator”, Bound States of the Magnetic Schrodinger Operator, Ems Tracts in Mathematics, 27, Eur. Math. Soc., 2017, 1–380  crossref  mathscinet  isi
    3. Tusek M., “On an extension of the Iwatsuka model”, J. Phys. A-Math. Theor., 49:36 (2016), 365205  crossref  mathscinet  zmath  isi  elib  scopus
    4. D.I. Borisov, “The Emergence of Eigenvalues of a PT-Symmetric Operator in a Thin Strip”, Math. Notes, 98:6 (2015), 872–883  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Bedoya R., de Oliveira C.R., Verri A.A., “Complex Gamma-Convergence and Magnetic Dirichlet Laplacian in Bounded Thin Tubes”, J. Spectr. Theory, 4:3 (2014), 621–642  crossref  mathscinet  zmath  isi  scopus
    6. Krejcirik D., Raymond N., “Magnetic Effects in Curved Quantum Waveguides”, Ann. Henri Poincare, 15:10 (2014), 1993–2024  crossref  mathscinet  zmath  adsnasa  isi  scopus
    7. Stockhofe J., Schmelcher P., “Nonadiabatic Couplings and Gauge-Theoretical Structure of Curved Quantum Waveguides”, Phys. Rev. A, 89:3 (2014), 033630  crossref  adsnasa  isi  elib  scopus
    8. Borisov D. Cardone G., “Planar waveguide with “twisted” boundary conditions: small width”, J. Math. Phys., 53:2 (2012), 023503, 22 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    9. V. V. Grushin, “Multiparameter Perturbation Theory of Fredholm Operators Applied to Bloch Functions”, Math. Notes, 86:6 (2009), 767–774  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:655
    Full-text PDF :258
    References:116
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025