Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 86, Issue 1, Pages 139–147
DOI: https://doi.org/10.4213/mzm4521
(Mi mzm4521)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the Number of A-Mappings

A. L. Yakymiv

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (469 kB) Citations (4)
References:
Abstract: Suppose that Sn is the semigroup of mappings of the set of n elements into itself, A is a fixed subset of the set of natural numbers N, and Vn(A) is the set of mappings from Sn whose contours are of sizes belonging to A. Mappings from Vn(A) are usually called A-mappings. Consider a random mapping σn, uniformly distributed on Vn(A). Suppose that νn is the number of components and λn is the number of cyclic points of the random mapping σn. In this paper, for a particular class of sets A, we obtain the asymptotics of the number of elements of the set Vn(A) and prove limit theorems for the random variables νn and λn as n.
Keywords: A-mapping, symmetric semigroup of mappings, random mapping, random variable, Euler gamma function, uniform distribution.
Received: 28.01.2008
Revised: 26.11.2008
English version:
Mathematical Notes, 2009, Volume 86, Issue 1, Pages 132–139
DOI: https://doi.org/10.1134/S0001434609070128
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: A. L. Yakymiv, “On the Number of A-Mappings”, Mat. Zametki, 86:1 (2009), 139–147; Math. Notes, 86:1 (2009), 132–139
Citation in format AMSBIB
\Bibitem{Yak09}
\by A.~L.~Yakymiv
\paper On the Number of $A$-Mappings
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 1
\pages 139--147
\mathnet{http://mi.mathnet.ru/mzm4521}
\crossref{https://doi.org/10.4213/mzm4521}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2588644}
\zmath{https://zbmath.org/?q=an:1176.60005}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 1
\pages 132--139
\crossref{https://doi.org/10.1134/S0001434609070128}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269660400012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76249091387}
Linking options:
  • https://www.mathnet.ru/eng/mzm4521
  • https://doi.org/10.4213/mzm4521
  • https://www.mathnet.ru/eng/mzm/v86/i1/p139
  • This publication is cited in the following 4 articles:
    1. A. L. Yakymiv, “Asimptotika chisla $A$-otobrazhenii s ostatochnym chlenom”, Diskret. matem., 36:3 (2024), 141–148  mathnet  crossref
    2. A. L. Yakymiv, “Size distribution of the largest component of a random $A$-mapping”, Discrete Math. Appl., 31:2 (2021), 145–153  mathnet  crossref  crossref  mathscinet  isi  elib
    3. A. L. Yakymiv, “On a number of components in a random $A$-mapping”, Theory Probab. Appl., 59:1 (2015), 114–127  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    4. A. L. Yakymiv, “On the number of cyclic points of random $A$-mapping”, Discrete Math. Appl., 23:5-6 (2013), 503–515  mathnet  crossref  crossref  mathscinet  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:460
    Full-text PDF :234
    References:81
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025