Citation:
S. Yu. Dobrokhotov, A. I. Shafarevich, “Parametrix and the asymptotics of localized solutions of the Navier-Stokes equations in R3, linearized on a smooth flow”, Mat. Zametki, 51:1 (1992), 72–82; Math. Notes, 51:1 (1992), 47–54
\Bibitem{DobSha92}
\by S.~Yu.~Dobrokhotov, A.~I.~Shafarevich
\paper Parametrix and the asymptotics of localized solutions of the Navier-Stokes equations in $\mathbf{R}^3$, linearized on a smooth flow
\jour Mat. Zametki
\yr 1992
\vol 51
\issue 1
\pages 72--82
\mathnet{http://mi.mathnet.ru/mzm4454}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1165282}
\zmath{https://zbmath.org/?q=an:0751.76020}
\transl
\jour Math. Notes
\yr 1992
\vol 51
\issue 1
\pages 47--54
\crossref{https://doi.org/10.1007/BF01229434}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992JW31000009}
Linking options:
https://www.mathnet.ru/eng/mzm4454
https://www.mathnet.ru/eng/mzm/v51/i1/p72
This publication is cited in the following 16 articles:
S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Efficient asymptotics of solutions to the Cauchy problem with localized initial data for linear systems of differential and pseudodifferential equations”, Russian Math. Surveys, 76:5 (2021), 745–819
Anna I. Allilueva, Andrei I. Shafarevich, “Evolution of Lagrangian Manifolds and Asymptotic Solutions to the Linearized Equations of Gas Dynamics”, Regul. Chaotic Dyn., 24:1 (2019), 80–89
A. I. Allilueva, A. I. Shafarevich, “Double Asymptotic Expansion of the Resolving Operator of the Cauchy Problem for the Linearized System of Gas Dynamics”, Dokl. Math., 99:1 (2019), 16
Allilueva A.I. Shafarevich A.I., “Localized Asymptotic Solutions of Linearized Equations of Gas Dynamics”, Russ. J. Math. Phys., 25:4 (2018), 415–422
O. N. Kirillov, “Dissipation-Induced Instabilities in Magnetized Flows”, J Math Sci, 235:4 (2018), 455
Oleg N. Kirillov, Innocent Mutabazi, “Short wavelength local instabilities of a circular Couette flow with radial temperature gradient”, J. Fluid Mech., 818 (2017), 319–343
O. N. Kirillov, “Narusheniya ustoichivosti namagnichennykh potokov, vyzvannye dissipatsiei”, Trudy Sedmoi Mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam (Moskva, 22–29 avgusta, 2014). Chast 3, SMFN, 60, RUDN, M., 2016, 82–101
A I Allilueva, A I Shafarevich, “Evolution of localized asymptotic solutions for linearized Navier — Stokes and MHD equations”, J. Phys.: Conf. Ser., 722 (2016), 012046
A. I. Allilueva, A. I. Shafarevich, “Asymptotic solutions of linearized Navier–Stokes equations localized in small neighborhoods of curves and surfaces”, Russ. J. Math. Phys., 22:4 (2015), 421
O. N. Kirillov, F. Stefani, Y. Fukumoto, “Local instabilities in magnetized rotational flows: a short-wavelength approach”, J. Fluid Mech., 760 (2014), 591
Oleg N Kirillov, Frank Stefani, Yasuhide Fukumoto, “Instabilities of rotational flows in azimuthal magnetic fields of arbitrary radial dependence”, Fluid Dyn. Res., 46:3 (2014), 031403
Oleg N. Kirillov, Frank Stefani, Yasuhide Fukumoto, “A UNIFYING PICTURE OF HELICAL AND AZIMUTHAL MAGNETOROTATIONAL INSTABILITY, AND THE UNIVERSAL SIGNIFICANCE OF THE LIU LIMIT”, ApJ, 756:1 (2012), 83
Kucherenko, VV, “Hyperbolic systems with multiplicity greater than or equal to three”, Russian Journal of Mathematical Physics, 16:2 (2009), 265
Susan Friedlander, Alexander Lipton-Lifschitz, Handbook of Mathematical Fluid Dynamics, 2, 2003, 289
Sergei Dobrokhotov, Victor M. Olive, Alexander Ruzmaikin, Andrei Shafarevich, “Magnetic field asymptotics in a well conducting fluid”, Geophysical & Astrophysical Fluid Dynamics, 82:3-4 (1996), 255
A. I. Shafarevich, “Behavior of rapidly decreasing asymptotic solutions of linearized Navier–Stokes equations t→∞”, Math. Notes, 55:6 (1994), 632–647