Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1992, Volume 51, Issue 1, Pages 72–82 (Mi mzm4454)  

This article is cited in 16 scientific papers (total in 16 papers)

Parametrix and the asymptotics of localized solutions of the Navier-Stokes equations in R3, linearized on a smooth flow

S. Yu. Dobrokhotov, A. I. Shafarevich

Institute for Problems in Mechanics, USSR Academy of Sciences
Received: 02.09.1991
English version:
Mathematical Notes, 1992, Volume 51, Issue 1, Pages 47–54
DOI: https://doi.org/10.1007/BF01229434
Bibliographic databases:
Language: Russian
Citation: S. Yu. Dobrokhotov, A. I. Shafarevich, “Parametrix and the asymptotics of localized solutions of the Navier-Stokes equations in R3, linearized on a smooth flow”, Mat. Zametki, 51:1 (1992), 72–82; Math. Notes, 51:1 (1992), 47–54
Citation in format AMSBIB
\Bibitem{DobSha92}
\by S.~Yu.~Dobrokhotov, A.~I.~Shafarevich
\paper Parametrix and the asymptotics of localized solutions of the Navier-Stokes equations in $\mathbf{R}^3$, linearized on a smooth flow
\jour Mat. Zametki
\yr 1992
\vol 51
\issue 1
\pages 72--82
\mathnet{http://mi.mathnet.ru/mzm4454}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1165282}
\zmath{https://zbmath.org/?q=an:0751.76020}
\transl
\jour Math. Notes
\yr 1992
\vol 51
\issue 1
\pages 47--54
\crossref{https://doi.org/10.1007/BF01229434}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992JW31000009}
Linking options:
  • https://www.mathnet.ru/eng/mzm4454
  • https://www.mathnet.ru/eng/mzm/v51/i1/p72
  • This publication is cited in the following 16 articles:
    1. S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Efficient asymptotics of solutions to the Cauchy problem with localized initial data for linear systems of differential and pseudodifferential equations”, Russian Math. Surveys, 76:5 (2021), 745–819  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Anna I. Allilueva, Andrei I. Shafarevich, “Evolution of Lagrangian Manifolds and Asymptotic Solutions to the Linearized Equations of Gas Dynamics”, Regul. Chaotic Dyn., 24:1 (2019), 80–89  mathnet  crossref
    3. A. I. Allilueva, A. I. Shafarevich, “Double Asymptotic Expansion of the Resolving Operator of the Cauchy Problem for the Linearized System of Gas Dynamics”, Dokl. Math., 99:1 (2019), 16  crossref
    4. Allilueva A.I. Shafarevich A.I., “Localized Asymptotic Solutions of Linearized Equations of Gas Dynamics”, Russ. J. Math. Phys., 25:4 (2018), 415–422  crossref  mathscinet  zmath  isi  scopus
    5. O. N. Kirillov, “Dissipation-Induced Instabilities in Magnetized Flows”, J Math Sci, 235:4 (2018), 455  crossref
    6. Oleg N. Kirillov, Innocent Mutabazi, “Short wavelength local instabilities of a circular Couette flow with radial temperature gradient”, J. Fluid Mech., 818 (2017), 319–343  mathnet  crossref  isi  scopus
    7. O. N. Kirillov, “Narusheniya ustoichivosti namagnichennykh potokov, vyzvannye dissipatsiei”, Trudy Sedmoi Mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam (Moskva, 22–29 avgusta, 2014). Chast 3, SMFN, 60, RUDN, M., 2016, 82–101  mathnet
    8. A I Allilueva, A I Shafarevich, “Evolution of localized asymptotic solutions for linearized Navier — Stokes and MHD equations”, J. Phys.: Conf. Ser., 722 (2016), 012046  crossref
    9. A. I. Allilueva, A. I. Shafarevich, “Asymptotic solutions of linearized Navier–Stokes equations localized in small neighborhoods of curves and surfaces”, Russ. J. Math. Phys., 22:4 (2015), 421  crossref
    10. O. N. Kirillov, F. Stefani, Y. Fukumoto, “Local instabilities in magnetized rotational flows: a short-wavelength approach”, J. Fluid Mech., 760 (2014), 591  crossref
    11. Oleg N Kirillov, Frank Stefani, Yasuhide Fukumoto, “Instabilities of rotational flows in azimuthal magnetic fields of arbitrary radial dependence”, Fluid Dyn. Res., 46:3 (2014), 031403  crossref
    12. Oleg N. Kirillov, Frank Stefani, Yasuhide Fukumoto, “A UNIFYING PICTURE OF HELICAL AND AZIMUTHAL MAGNETOROTATIONAL INSTABILITY, AND THE UNIVERSAL SIGNIFICANCE OF THE LIU LIMIT”, ApJ, 756:1 (2012), 83  crossref
    13. Kucherenko, VV, “Hyperbolic systems with multiplicity greater than or equal to three”, Russian Journal of Mathematical Physics, 16:2 (2009), 265  crossref  mathscinet  zmath  adsnasa  isi
    14. Susan Friedlander, Alexander Lipton-Lifschitz, Handbook of Mathematical Fluid Dynamics, 2, 2003, 289  crossref
    15. Sergei Dobrokhotov, Victor M. Olive, Alexander Ruzmaikin, Andrei Shafarevich, “Magnetic field asymptotics in a well conducting fluid”, Geophysical & Astrophysical Fluid Dynamics, 82:3-4 (1996), 255  crossref
    16. A. I. Shafarevich, “Behavior of rapidly decreasing asymptotic solutions of linearized Navier–Stokes equations t”, Math. Notes, 55:6 (1994), 632–647  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:408
    Full-text PDF :176
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025