Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 72, Issue 4, Pages 561–569
DOI: https://doi.org/10.4213/mzm445
(Mi mzm445)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the Spectrum Localization of the Orr–Sommerfeld Problem for Large Reynolds Numbers

S. N. Tumanova, A. A. Shkalikovb

a M. V. Lomonosov Moscow State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (217 kB) Citations (9)
References:
Abstract: The paper deals with the Orr–Sommerfeld problem and the corresponding model problem
$$ -i\varepsilon ^2y''-q(x)y=-\lambda y, \qquad y(-1)=y(1)=0. $$
The functions $q(x)= x$ and $q(x)= x^2$ in this model correspond to the Couette and the Poiseuille profiles, respectively. Small values of the parameter $\varepsilon$ correspond to large Reynolds numbers. As $\varepsilon$ tends to zero, the spectrum of the model problem is localized near certain critical curves in the complex plane, whose explicit form can be determined. Moreover, there are asymptotic formulas for the eigenvalue distribution along these curves as $\varepsilon \to 0$. The main result of the paper is the following: as the Reynolds number tends to infinity, the spectrum of the Orr–Sommerfeld problem for the Couette and the Poiseuille flows is localized to the critical curves, which are the same as in the model problem. Moreover, the main terms of the asymptotic formulas for the eigenvalue distribution are preserved.
Received: 07.12.2001
Revised: 05.04.2002
English version:
Mathematical Notes, 2002, Volume 72, Issue 4, Pages 519–526
DOI: https://doi.org/10.1023/A:1020588429647
Bibliographic databases:
UDC: 517.984
Language: Russian
Citation: S. N. Tumanov, A. A. Shkalikov, “On the Spectrum Localization of the Orr–Sommerfeld Problem for Large Reynolds Numbers”, Mat. Zametki, 72:4 (2002), 561–569; Math. Notes, 72:4 (2002), 519–526
Citation in format AMSBIB
\Bibitem{TumShk02}
\by S.~N.~Tumanov, A.~A.~Shkalikov
\paper On the Spectrum Localization of the Orr--Sommerfeld Problem for Large Reynolds Numbers
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 4
\pages 561--569
\mathnet{http://mi.mathnet.ru/mzm445}
\crossref{https://doi.org/10.4213/mzm445}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1963151}
\zmath{https://zbmath.org/?q=an:1022.76016}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 4
\pages 519--526
\crossref{https://doi.org/10.1023/A:1020588429647}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179160400026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141625247}
Linking options:
  • https://www.mathnet.ru/eng/mzm445
  • https://doi.org/10.4213/mzm445
  • https://www.mathnet.ru/eng/mzm/v72/i4/p561
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:682
    Full-text PDF :252
    References:67
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024