Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 87, Issue 3, Pages 382–395
DOI: https://doi.org/10.4213/mzm4428
(Mi mzm4428)
 

This article is cited in 12 scientific papers (total in 12 papers)

Farthest Points and Strong Convexity of Sets

G. E. Ivanov

Moscow Institute of Physics and Technology
References:
Abstract: We consider the existence and uniqueness of the farthest point of a given set A in Banach space E from a given point x in the space E. It is assumed that A is a convex, closed, and bounded set in a uniformly convex Banach space E with Fréchet differentiable norm. It is shown that, for any point x sufficiently far from the set A, the point of the set A which is farthest from x exists, is unique, and depends continuously on the point x if and only if the set A in the Minkowski sum with some other set yields a ball. Moreover, the farthest (from x) point of the set A also depends continuously on the set A in the sense of the Hausdorff metric. If the norm ball of the space E is a generating set, these conditions on the set A are equivalent to its strong convexity.
Keywords: optimization problem, farthest points, strong convexity of a set, Banach space, Fréchet differentiable norm, Minkowski sum, Hausdorff metric, metric antiprojection, antisun.
Received: 05.01.2008
Revised: 15.08.2009
English version:
Mathematical Notes, 2010, Volume 87, Issue 3, Pages 355–366
DOI: https://doi.org/10.1134/S0001434610030065
Bibliographic databases:
Document Type: Article
UDC: 517.982.252+517.982.256
Language: Russian
Citation: G. E. Ivanov, “Farthest Points and Strong Convexity of Sets”, Mat. Zametki, 87:3 (2010), 382–395; Math. Notes, 87:3 (2010), 355–366
Citation in format AMSBIB
\Bibitem{Iva10}
\by G.~E.~Ivanov
\paper Farthest Points and Strong Convexity of Sets
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 3
\pages 382--395
\mathnet{http://mi.mathnet.ru/mzm4428}
\crossref{https://doi.org/10.4213/mzm4428}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2761594}
\zmath{https://zbmath.org/?q=an:05791057}
\elib{https://elibrary.ru/item.asp?id=15321857}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 3
\pages 355--366
\crossref{https://doi.org/10.1134/S0001434610030065}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279034600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953986649}
Linking options:
  • https://www.mathnet.ru/eng/mzm4428
  • https://doi.org/10.4213/mzm4428
  • https://www.mathnet.ru/eng/mzm/v87/i3/p382
  • This publication is cited in the following 12 articles:
    1. Florent Nacry, Lionel Thibault, “Strongly convex sets with variable radii”, MCRF, 2024  crossref
    2. I. G. Tsar'kov, “Estimates of the Chebyshev Radius in Terms of the MAX-Metric Function and the MAX-Projection Operator”, Russ. J. Math. Phys., 30:1 (2023), 128  crossref
    3. Alimov A.R., “Solarity of Chebyshev Sets in Dual Spaces and Uniquely Remotal Sets”, Lobachevskii J. Math., 42:4, SI (2021), 785–790  mathnet  crossref  mathscinet  isi
    4. Alimov A.R., “Solarity of Sets in Max-Approximation Problems”, J. Fixed Point Theory Appl., 21:3 (2019), UNSP 76  crossref  mathscinet  isi  scopus
    5. Cabot A., Jourani A., Thibault L., Zagrodny D., “The Attainment Set of the Phi-Envelope and Genericity Properties”, Math. Scand., 124:2 (2019), 203–246  crossref  mathscinet  isi
    6. Balashov M.V. Ivanov G.E., “The Farthest and the Nearest Points of Sets”, J. Convex Anal., 25:3 (2018), 1019–1031  mathscinet  zmath  isi
    7. Goncharov V.V. Ivanov G.E., “Strong and Weak Convexity of Closed Sets in a Hilbert Space”, Operations Research, Engineering, and Cyber Security: Trends in Applied Mathematics and Technology, Springer Optimization and Its Applications, 113, ed. Daras N. Rassias T., Springer International Publishing Ag, 2017, 259–297  crossref  mathscinet  zmath  isi  scopus
    8. Balashov M.V., “Antidistance and Antiprojection in the Hilbert Space”, J. Convex Anal., 22:2 (2015), 521–536  mathscinet  zmath  isi
    9. Balashov M.V. Golubev M.O., “Weak Concavity of the Antidistance Function”, J. Convex Anal., 21:4 (2014), 951–964  mathscinet  zmath  isi
    10. Khademzadeh H.R. Mazaheri H., “Monotonicity and the Dominated Farthest Points Problem in Banach Lattice”, Abstract Appl. Anal., 2014, 616989  crossref  mathscinet  isi  elib  scopus
    11. Balashov M.V., “Uslovie lipshitsa dlya naibolee udalennoi tochki v gilbertovom prostranstve”, Trudy Moskovskogo fiziko-tekhnicheskogo instituta, 2012, no. 4-16, 8–14  elib
    12. Mirmostafaee A.K. Mirzavaziri M., “Uniquely Remotal Sets in C(0)-Sums and l(Infinity)-Sums of Fuzzy Normed Spaces”, Iran. J. Fuzzy. Syst., 9:6 (2012), 113–122  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:658
    Full-text PDF :263
    References:122
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025