UDC:
one-dimensional Schr\"odinger operator, δ function, point δ- and δ′-interactions, Weyl function, Sobolev space, boundary triple of an operator
Language: Russian
Citation:
N. I. Goloschapova, L. L. Oridoroga, “The One-Dimensional Schrödinger Operator with Point δ- and δ′-Interactions”, Mat. Zametki, 84:1 (2008), 127–131; Math. Notes, 84:1 (2008), 125–129
This publication is cited in the following 8 articles:
Cardone G., Khrabustovskyi A., “Delta `-Interaction as a Limit of a Thin Neumann Waveguide With Transversal Window”, J. Math. Anal. Appl., 473:2 (2019), 1320–1342
Erman F., “On the Number of Bound States of Semirelativistic Hamiltonian With Dirac Delta Potentials in One Dimension”, Can. J. Phys., 96:11 (2018), 1235–1241
Erman F., “On the number of bound states of point interactions on hyperbolic manifolds”, Int. J. Geom. Methods Mod. Phys., 14:1 (2017), 1750011
Yurii Kovalev, “To the theory of nonnegative point Hamiltonians on a plane and in the space”, J Math Sci, 204:3 (2015), 315
Pankrashkin K., Richard S., “Spectral and scattering theory for the Aharonov–Bohm operators”, Rev. Math. Phys., 23:1 (2011), 53–81
Higuchi Yu., Matsumoto T., Ogurisu O., “On the Spectrum of a Discrete Laplacian on Z with Finitely Supported Potential”, Linear Multilinear Algebra, 59:8 (2011), 917–927
Goloschapova N., Oridoroga L., “On the negative spectrum of one-dimensional Schrödinger operators with point interactions”, Integral Equations Operator Theory, 67:1 (2010), 1–14
E de Prunelé, “Critical points for a one-dimensional Schrödinger operator with finite number of point delta- interactions and number of eigenvalues”, J. Phys. A: Math. Theor., 43:28 (2010), 285303