Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 83, Issue 2, Pages 273–285
DOI: https://doi.org/10.4213/mzm4419
(Mi mzm4419)
 

This article is cited in 2 scientific papers (total in 2 papers)

Zeta Functions of Bielliptic Surfaces over Finite Fields

S. Yu. Rybakov

Independent University of Moscow
Full-text PDF (521 kB) Citations (2)
References:
Abstract: Let $S$ be a bielliptic surface over a finite field, and let the elliptic curve $B$ be the image of the Albanese mapping $S\to B$. In this case, the zeta function of the surface is equal to the zeta function of the direct product $\mathbb P^1\times B$. A classification of the possible zeta functions of bielliptic surfaces is also presented in the paper.
Keywords: variety over a finite field, zeta function, bielliptic surface, Albanese mapping, elliptic curve, étale cohomology, Frobenius morphism, isogeny class.
Received: 03.04.2007
English version:
Mathematical Notes, 2008, Volume 83, Issue 2, Pages 246–256
DOI: https://doi.org/10.1134/S0001434608010264
Bibliographic databases:
UDC: 512.754
Language: Russian
Citation: S. Yu. Rybakov, “Zeta Functions of Bielliptic Surfaces over Finite Fields”, Mat. Zametki, 83:2 (2008), 273–285; Math. Notes, 83:2 (2008), 246–256
Citation in format AMSBIB
\Bibitem{Ryb08}
\by S.~Yu.~Rybakov
\paper Zeta Functions of Bielliptic Surfaces over Finite Fields
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 2
\pages 273--285
\mathnet{http://mi.mathnet.ru/mzm4419}
\crossref{https://doi.org/10.4213/mzm4419}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2431586}
\zmath{https://zbmath.org/?q=an:1159.14011}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 2
\pages 246--256
\crossref{https://doi.org/10.1134/S0001434608010264}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254056300025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48849103286}
Linking options:
  • https://www.mathnet.ru/eng/mzm4419
  • https://doi.org/10.4213/mzm4419
  • https://www.mathnet.ru/eng/mzm/v83/i2/p273
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:435
    Full-text PDF :243
    References:50
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024