Abstract:
We prove that if a tree is representable as the free product of a finite set of cyclic groups of order two, then it is necessarily a Caley tree. For other trees, their presentations as some finite sets of sequences constructed from some recurrence relations are described. Using these presentations, we give a complete description of translation-invariant measures and a class of periodic Gibbs measures for a nonhomogeneous Ising model on an arbitrary tree. A sufficient condition for a random walk in a random environment on an arbitrary tree to be transient is described.
Citation:
U. A. Rozikov, “Representability of Trees and Some of Their Applications”, Mat. Zametki, 72:4 (2002), 516–527; Math. Notes, 72:4 (2002), 479–488
\Bibitem{Roz02}
\by U.~A.~Rozikov
\paper Representability of Trees and Some of Their Applications
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 4
\pages 516--527
\mathnet{http://mi.mathnet.ru/mzm441}
\crossref{https://doi.org/10.4213/mzm441}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1963147}
\zmath{https://zbmath.org/?q=an:1028.82008}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 4
\pages 479--488
\crossref{https://doi.org/10.1023/A:1020580227830}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179160400022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141848649}
Linking options:
https://www.mathnet.ru/eng/mzm441
https://doi.org/10.4213/mzm441
https://www.mathnet.ru/eng/mzm/v72/i4/p516
This publication is cited in the following 6 articles:
Ny A.L., Liao L., Rozikov U.A., “P-Adic Boundary Laws and Markov Chains on Trees”, Lett. Math. Phys., 110:10 (2020), 2725–2741
Ahmad Mohd Ali Khameini, Liao L., Saburov M., “Periodic P-Adic Gibbs Measures of Q-State Potts Model on Cayley Trees i: the Chaos Implies the Vastness of the Set of P-Adic Gibbs Measures”, J. Stat. Phys., 171:6 (2018), 1000–1034
O. N. Khakimov, “On a generalized p-adic Gibbs measure for Ising model on trees”, P-Adic Num Ultrametr Anal Appl, 6:3 (2014), 207
Rozikov U.A., “Gibbs Measures on Cayley Trees: Results and Open Problems”, Rev. Math. Phys., 25:1 (2013), 1330001
É. P. Normatov, U. A. Rozikov, “A description of harmonic functions via properties of the group representation of the Cayley tree”, Math. Notes, 79:3 (2006), 399–407