Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 3, Pages 405–420
DOI: https://doi.org/10.4213/mzm44
(Mi mzm44)
 

This article is cited in 20 scientific papers (total in 20 papers)

Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function

A. M. Sedletskii

M. V. Lomonosov Moscow State University
References:
Abstract: We completely solve the problem of finding the number of positive and nonnegative roots of the Mittag-Leffler type function
$$ E_\rho(z;\mu)=\sum_{n=0}^\infty \frac{z^n}{\Gamma(\mu+n/\rho)}, \qquad \rho>0, \qquad \mu\in\mathbb C, $$
for $\rho>1$ and $\mu\in\mathbb R$. We prove that there are no roots in the left angular sector $\pi/\rho\le|\arg z|\le\pi$ for $\rho>1$ and $1\le\mu<1+1/\rho$. We consider the problem of multiple roots; in particular, we show that the classical Mittag-Leffler function $E_n(z;1)$ of integer order does not have multiple roots.
Received: 24.10.2002
English version:
Mathematical Notes, 2004, Volume 75, Issue 3, Pages 372–386
DOI: https://doi.org/10.1023/B:MATN.0000023316.90489.fe
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. M. Sedletskii, “Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function”, Mat. Zametki, 75:3 (2004), 405–420; Math. Notes, 75:3 (2004), 372–386
Citation in format AMSBIB
\Bibitem{Sed04}
\by A.~M.~Sedletskii
\paper Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 3
\pages 405--420
\mathnet{http://mi.mathnet.ru/mzm44}
\crossref{https://doi.org/10.4213/mzm44}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068803}
\zmath{https://zbmath.org/?q=an:1057.33015}
\elib{https://elibrary.ru/item.asp?id=6009710}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 3
\pages 372--386
\crossref{https://doi.org/10.1023/B:MATN.0000023316.90489.fe}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221289900008}
Linking options:
  • https://www.mathnet.ru/eng/mzm44
  • https://doi.org/10.4213/mzm44
  • https://www.mathnet.ru/eng/mzm/v75/i3/p405
  • This publication is cited in the following 20 articles:
    1. O. S. Budnikova, M. N. Botoroeva, G. K. Sokolova, “Postroenie oblastei ustoichivosti neyavnogo metoda dlya chislennogo resheniya integro-algebraicheskogo uravneniya tipa Abelya”, Sib. zhurn. vychisl. matem., 26:1 (2023), 1–16  mathnet  crossref
    2. O. S. Budnikova, M. N. Botoroeva, G. K. Sokolova, “Stability Domains of an Implicit Method for the Numerical Solution of Abel Type Integral Algebraic Equations”, Numer. Analys. Appl., 16:1 (2023), 1  crossref
    3. Van Ho Thi Kim, “On a Nonlocal Fractional Sobolev Equation With Riemann-Liouville Derivative”, Bull. Math. Anal. Appl., 13:3 (2021), 13–24  mathscinet  isi
    4. Ngoc T.B., Tri V.V., Hammouch Z., Can N.H., “Stability of a Class of Problems For Time-Space Fractional Pseudo-Parabolic Equation With Datum Measured At Terminal Time”, Appl. Numer. Math., 167 (2021), 308–329  crossref  mathscinet  isi  scopus
    5. Tran Bao Ngoc, Zhou Y., O'Regan D., Nguyen Huy Tuan, “On a Terminal Value Problem For Pseudoparabolic Equations Involving Riemann-Liouville Fractional Derivatives”, Appl. Math. Lett., 106 (2020), 106373  crossref  mathscinet  isi  scopus
    6. Bhalekar S., Patil M., “Singular Points in the Solution Trajectories of Fractional Order Dynamical Systems”, Chaos, 28:11 (2018), 113123  crossref  mathscinet  zmath  isi  scopus
    7. Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 165  crossref
    8. Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 235  crossref
    9. Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 55  crossref
    10. Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 17  crossref
    11. Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 1  crossref
    12. Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 7  crossref
    13. Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 129  crossref
    14. Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 97  crossref
    15. Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 201  crossref
    16. Hanneken J.W., Achar B.N.N., Vaught D.M., “An Alpha-Beta Phase Diagram Representation of the Zeros and Properties of the Mittag-Leffler Function”, Adv. Math. Phys., 2013, 421685  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    17. A. Yu. Popov, A. M. Sedletskii, “Distribution of roots of Mittag-Leffler functions”, Journal of Mathematical Sciences, 190:2 (2013), 209–409  mathnet  crossref  mathscinet  zmath
    18. Rogosin S., Koroleva A., “INTEGRAL REPRESENTATION OF THE FOUR-PARAMETRIC GENERALIZED MITTAG-LEFFLER FUNCTION”, Lith Math J, 50:3 (2010), 337–343  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    19. A. Yu. Popov, “On the number of real eigenvalues of a certain boundary-value problem for a second-order equation with fractional derivative”, J. Math. Sci., 151:1 (2008), 2726–2740  mathnet  crossref  mathscinet  zmath
    20. A. V. Pskhu, “On the real zeros of functions of Mittag-Leffler type”, Math. Notes, 77:4 (2005), 546–552  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:715
    Full-text PDF :320
    References:94
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025