Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 3, Pages 405–420
DOI: https://doi.org/10.4213/mzm44
(Mi mzm44)
 

This article is cited in 20 scientific papers (total in 20 papers)

Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function

A. M. Sedletskii

M. V. Lomonosov Moscow State University
References:
Abstract: We completely solve the problem of finding the number of positive and nonnegative roots of the Mittag-Leffler type function
$$ E_\rho(z;\mu)=\sum_{n=0}^\infty \frac{z^n}{\Gamma(\mu+n/\rho)}, \qquad \rho>0, \qquad \mu\in\mathbb C, $$
for $\rho>1$ and $\mu\in\mathbb R$. We prove that there are no roots in the left angular sector $\pi/\rho\le|\arg z|\le\pi$ for $\rho>1$ and $1\le\mu<1+1/\rho$. We consider the problem of multiple roots; in particular, we show that the classical Mittag-Leffler function $E_n(z;1)$ of integer order does not have multiple roots.
Received: 24.10.2002
English version:
Mathematical Notes, 2004, Volume 75, Issue 3, Pages 372–386
DOI: https://doi.org/10.1023/B:MATN.0000023316.90489.fe
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. M. Sedletskii, “Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function”, Mat. Zametki, 75:3 (2004), 405–420; Math. Notes, 75:3 (2004), 372–386
Citation in format AMSBIB
\Bibitem{Sed04}
\by A.~M.~Sedletskii
\paper Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 3
\pages 405--420
\mathnet{http://mi.mathnet.ru/mzm44}
\crossref{https://doi.org/10.4213/mzm44}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068803}
\zmath{https://zbmath.org/?q=an:1057.33015}
\elib{https://elibrary.ru/item.asp?id=6009710}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 3
\pages 372--386
\crossref{https://doi.org/10.1023/B:MATN.0000023316.90489.fe}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221289900008}
Linking options:
  • https://www.mathnet.ru/eng/mzm44
  • https://doi.org/10.4213/mzm44
  • https://www.mathnet.ru/eng/mzm/v75/i3/p405
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024