Abstract:
We completely solve the problem of finding the number of positive and nonnegative roots of the Mittag-Leffler type function
$$
E_\rho(z;\mu)=\sum_{n=0}^\infty
\frac{z^n}{\Gamma(\mu+n/\rho)},
\qquad \rho>0,
\qquad \mu\in\mathbb C,
$$
for $\rho>1$ and $\mu\in\mathbb R$. We prove that there are no roots in the left angular sector $\pi/\rho\le|\arg z|\le\pi$ for $\rho>1$ and $1\le\mu<1+1/\rho$. We consider the problem of multiple roots; in particular, we show that the classical Mittag-Leffler function $E_n(z;1)$ of integer order does not have multiple roots.
Citation:
A. M. Sedletskii, “Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function”, Mat. Zametki, 75:3 (2004), 405–420; Math. Notes, 75:3 (2004), 372–386
\Bibitem{Sed04}
\by A.~M.~Sedletskii
\paper Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 3
\pages 405--420
\mathnet{http://mi.mathnet.ru/mzm44}
\crossref{https://doi.org/10.4213/mzm44}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068803}
\zmath{https://zbmath.org/?q=an:1057.33015}
\elib{https://elibrary.ru/item.asp?id=6009710}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 3
\pages 372--386
\crossref{https://doi.org/10.1023/B:MATN.0000023316.90489.fe}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221289900008}
Linking options:
https://www.mathnet.ru/eng/mzm44
https://doi.org/10.4213/mzm44
https://www.mathnet.ru/eng/mzm/v75/i3/p405
This publication is cited in the following 20 articles:
O. S. Budnikova, M. N. Botoroeva, G. K. Sokolova, “Postroenie oblastei ustoichivosti neyavnogo metoda dlya chislennogo resheniya integro-algebraicheskogo uravneniya tipa Abelya”, Sib. zhurn. vychisl. matem., 26:1 (2023), 1–16
O. S. Budnikova, M. N. Botoroeva, G. K. Sokolova, “Stability Domains of an Implicit Method for the Numerical Solution of Abel Type Integral Algebraic Equations”, Numer. Analys. Appl., 16:1 (2023), 1
Van Ho Thi Kim, “On a Nonlocal Fractional Sobolev Equation With Riemann-Liouville Derivative”, Bull. Math. Anal. Appl., 13:3 (2021), 13–24
Ngoc T.B., Tri V.V., Hammouch Z., Can N.H., “Stability of a Class of Problems For Time-Space Fractional Pseudo-Parabolic Equation With Datum Measured At Terminal Time”, Appl. Numer. Math., 167 (2021), 308–329
Tran Bao Ngoc, Zhou Y., O'Regan D., Nguyen Huy Tuan, “On a Terminal Value Problem For Pseudoparabolic Equations Involving Riemann-Liouville Fractional Derivatives”, Appl. Math. Lett., 106 (2020), 106373
Bhalekar S., Patil M., “Singular Points in the Solution Trajectories of Fractional Order Dynamical Systems”, Chaos, 28:11 (2018), 113123
Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 165
Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 235
Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 55
Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 17
Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 1
Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 7
Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 129
Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 97
Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Springer Monographs in Mathematics, Mittag-Leffler Functions, Related Topics and Applications, 2014, 201
Hanneken J.W., Achar B.N.N., Vaught D.M., “An Alpha-Beta Phase Diagram Representation of the Zeros and Properties of the Mittag-Leffler Function”, Adv. Math. Phys., 2013, 421685
A. Yu. Popov, A. M. Sedletskii, “Distribution of roots of Mittag-Leffler functions”, Journal of Mathematical Sciences, 190:2 (2013), 209–409
Rogosin S., Koroleva A., “INTEGRAL REPRESENTATION OF THE FOUR-PARAMETRIC GENERALIZED MITTAG-LEFFLER FUNCTION”, Lith Math J, 50:3 (2010), 337–343
A. Yu. Popov, “On the number of real eigenvalues of a certain boundary-value problem for a second-order equation with fractional derivative”, J. Math. Sci., 151:1 (2008), 2726–2740
A. V. Pskhu, “On the real zeros of functions of Mittag-Leffler type”, Math. Notes, 77:4 (2005), 546–552