|
This article is cited in 20 scientific papers (total in 20 papers)
Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function
A. M. Sedletskii M. V. Lomonosov Moscow State University
Abstract:
We completely solve the problem of finding the number of positive and nonnegative roots of the Mittag-Leffler type function
$$
E_\rho(z;\mu)=\sum_{n=0}^\infty
\frac{z^n}{\Gamma(\mu+n/\rho)},
\qquad \rho>0,
\qquad \mu\in\mathbb C,
$$
for $\rho>1$ and $\mu\in\mathbb R$. We prove that there are no roots in the left angular sector $\pi/\rho\le|\arg z|\le\pi$ for $\rho>1$ and $1\le\mu<1+1/\rho$. We consider the problem of multiple roots; in particular, we show that the classical Mittag-Leffler function $E_n(z;1)$ of integer order does not have multiple roots.
Received: 24.10.2002
Citation:
A. M. Sedletskii, “Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function”, Mat. Zametki, 75:3 (2004), 405–420; Math. Notes, 75:3 (2004), 372–386
Linking options:
https://www.mathnet.ru/eng/mzm44https://doi.org/10.4213/mzm44 https://www.mathnet.ru/eng/mzm/v75/i3/p405
|
|