|
This article is cited in 3 scientific papers (total in 3 papers)
On Mappings Related to the Gradient of the Conformal Radius
L. A. Aksent'ev, A. N. Akhmetova Kazan State University, Faculty of Mechanics and Mathematics
Abstract:
We establish a criterion for the gradient $\nabla R(D,z)$ of the conformal radius of a convex domain $D$ to be conformal: the boundary $\partial D$ must be a circle. We obtain estimates for the coefficients $K(r)$ for the $K(r)$-quasiconformal mappings $\nabla R(D,z)$, $D(r)\subset D$, $0<r<1$, and supplement the results of Avkhadiev and Wirths concerning the structure of the boundary under diffeomorphic mappings of the domain $D$.
Keywords:
conformal radius, gradient of the conformal radius, coefficient of quasiconformality, convex mapping, astroid, cycloid, hypocycloid.
Received: 10.12.2007 Revised: 29.06.2009
Citation:
L. A. Aksent'ev, A. N. Akhmetova, “On Mappings Related to the Gradient of the Conformal Radius”, Mat. Zametki, 87:1 (2010), 3–12; Math. Notes, 87:1 (2010), 3–11
Linking options:
https://www.mathnet.ru/eng/mzm4347https://doi.org/10.4213/mzm4347 https://www.mathnet.ru/eng/mzm/v87/i1/p3
|
Statistics & downloads: |
Abstract page: | 650 | Full-text PDF : | 221 | References: | 114 | First page: | 18 |
|