Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 3, Pages 440–450
DOI: https://doi.org/10.4213/mzm4345
(Mi mzm4345)
 

This article is cited in 17 scientific papers (total in 17 papers)

On the Well-Posedness of the Prediction-Control Problem for Certain Systems of Equations

A. V. Urazaeva, V. E. Fedorov

Chelyabinsk State University
References:
Abstract: Consider the inverse problem for equations of Sobolev type and their applications to linearized Navier–Stokes systems and phase-field systems. We obtain conditions for the well-defined solvability of these systems.
Keywords: prediction-control problem, Navier–Stokes system of equations, Banach space, strongly (L,p)-sectorial operator, analytic semigroup, seepage of liquids.
Received: 27.12.2007
English version:
Mathematical Notes, 2009, Volume 85, Issue 3, Pages 426–436
DOI: https://doi.org/10.1134/S0001434609030134
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: A. V. Urazaeva, V. E. Fedorov, “On the Well-Posedness of the Prediction-Control Problem for Certain Systems of Equations”, Mat. Zametki, 85:3 (2009), 440–450; Math. Notes, 85:3 (2009), 426–436
Citation in format AMSBIB
\Bibitem{UraFed09}
\by A.~V.~Urazaeva, V.~E.~Fedorov
\paper On the Well-Posedness of the Prediction-Control Problem for Certain Systems of Equations
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 3
\pages 440--450
\mathnet{http://mi.mathnet.ru/mzm4345}
\crossref{https://doi.org/10.4213/mzm4345}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2548051}
\zmath{https://zbmath.org/?q=an:1185.35337}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 3
\pages 426--436
\crossref{https://doi.org/10.1134/S0001434609030134}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266561100013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949188814}
Linking options:
  • https://www.mathnet.ru/eng/mzm4345
  • https://doi.org/10.4213/mzm4345
  • https://www.mathnet.ru/eng/mzm/v85/i3/p440
  • This publication is cited in the following 17 articles:
    1. V. E. Fedorov, A. V. Nagumanova, “Inverse Linear Problems for a Certain Class of Degenerate Fractional Evolution Equations”, J Math Sci, 260:3 (2022), 371  crossref
    2. Fedorov V.E. Nagumanova A.V. Avilovich A.S., “A Class of Inverse Problems For Evolution Equations With the Riemann-Liouville Derivative in the Sectorial Case”, Math. Meth. Appl. Sci., 44:15 (2021), 11961–11969  crossref  mathscinet  isi
    3. Fedorov V.E. Nagumanova V A. Kostic M., “A Class of Inverse Problems For Fractional Order Degenerate Evolution Equations”, J. Inverse Ill-Posed Probl., 29:2 (2021), 173–184  crossref  mathscinet  isi
    4. Fedorov V.E., Ivanova N.D., “Inverse Problems For a Class of Linear Sobolev Type Equations With Overdetermination on the Kernel of Operator At the Derivative”, J. Inverse Ill-Posed Probl., 28:1 (2020), 53–61  crossref  mathscinet  isi  scopus
    5. Fedorov V.E. Kostic M., “Identification Problem For Strongly Degenerate Evolution Equations With the Gerasimov-Caputo Derivative”, Differ. Equ., 56:12 (2020), 1613–1627  crossref  mathscinet  isi  scopus
    6. Fedorov V.E. Nazhimov R.R., “Inverse Problems For a Class of Degenerate Evolution Equations With Riemann - Liouville Derivative”, Fract. Calc. Appl. Anal., 22:2 (2019), 271–286  crossref  mathscinet  isi
    7. V. E. Fedorov, A. V. Nagumanova, “Obratnaya zadacha dlya evolyutsionnogo uravneniya s drobnoi proizvodnoi Gerasimova–Kaputo v sektorialnom sluchae”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 28 (2019), 123–137  mathnet  crossref
    8. V. E. Fedorov, A. V. Nagumanova, “Lineinye obratnye zadachi dlya odnogo klassa vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Materialy IV Mezhdunarodnoi nauchnoi konferentsii “Aktualnye problemy prikladnoi matematiki”. Kabardino-Balkarskaya respublika, Nalchik, Prielbruse, 22–26 maya 2018 g. Chast III, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 167, VINITI RAN, M., 2019, 97–111  mathnet  crossref
    9. Fedorov V.E. Ivanova N.D., “Identification Problem For Degenerate Evolution Equations of Fractional Order”, Fract. Calc. Appl. Anal., 20:3 (2017), 706–721  crossref  mathscinet  zmath  isi  scopus
    10. V. V. Vasil'ev, S. I. Piskarev, N. Yu. Selivanova, “Integrated Semigroups and C-Semigroups and Their Applications”, J. Math. Sci. (N. Y.), 230:4 (2018), 513–646  mathnet  mathnet  crossref  scopus
    11. Fedorov V.E., Ivanova N.D., “Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel”, Discret. Contin. Dyn. Syst.-Ser. S, 9:3 (2016), 687–696  crossref  mathscinet  zmath  isi  elib  scopus
    12. S. G. Pyatkov, S. N. Shergin, “On some mathematical models of filtration theory”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:2 (2015), 105–116  mathnet  crossref  elib
    13. A. Sh. Lyubanova, “Inverse problem for a pseudoparabolic equation with integral overdetermination conditions”, Differ. Equ., 50:4 (2014), 502–512  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    14. N. D. Ivanova, “Inverse problem for a linearized quasi-stationary phase field model with degeneracy”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 6:2 (2013), 128–132  mathnet
    15. Ivanova N.D., Fedorov V.E., Komarova K.M., “Nelineinaya obratnaya zadacha dlya sistemy Oskolkova, linearizovannoi v okrestnosti statsionarnogo resheniya”, Vestn. Chelyabinskogo gos. un-ta, 2012, no. 26, 49–70  mathscinet  elib
    16. N. D. Ivanova, V. E. Fedorov, K. M. Komarova, “Nelineinaya obratnaya zadacha dlya sistemy Oskolkova, linearizovannoi v okrestnosti statsionarnogo resheniya”, Vestnik ChelGU, 2012, no. 15, 49–70  mathnet
    17. M. V. Falaleev, “Abstraktnaya zadacha prognoz-upravlenie s vyrozhdeniem v banakhovykh prostranstvakh”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 3:1 (2010), 126–132  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:626
    Full-text PDF :221
    References:109
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025