Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 83, Issue 1, Pages 139–152
DOI: https://doi.org/10.4213/mzm4340
(Mi mzm4340)
 

This article is cited in 22 scientific papers (total in 22 papers)

Inverse Problems for Differential Operators of Any Order on Trees

V. A. Yurko

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: Inverse spectral problems for ordinary differential operators of any order on compact trees are studied. As the main spectral characteristics, Weyl matrices, which generalize the Weyl m-function for the classical Sturm–Liouville operator are introduced and studied. A constructive solution procedure for the inverse problem based on Weyl matrices is suggested, and the uniqueness of the solution is proved. The reconstruction of differential equations from discrete spectral characteristics is also considered.
Keywords: differential operator on a tree, inverse spectral problem on a tree, Weyl solution, Weyl matrix, method of spectral mappings.
Received: 19.04.2007
English version:
Mathematical Notes, 2008, Volume 83, Issue 1, Pages 125–137
DOI: https://doi.org/10.1134/S000143460801015X
Bibliographic databases:
UDC: 517.984
Language: Russian
Citation: V. A. Yurko, “Inverse Problems for Differential Operators of Any Order on Trees”, Mat. Zametki, 83:1 (2008), 139–152; Math. Notes, 83:1 (2008), 125–137
Citation in format AMSBIB
\Bibitem{Yur08}
\by V.~A.~Yurko
\paper Inverse Problems for Differential Operators of Any Order on Trees
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 1
\pages 139--152
\mathnet{http://mi.mathnet.ru/mzm4340}
\crossref{https://doi.org/10.4213/mzm4340}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2400006}
\zmath{https://zbmath.org/?q=an:1171.34004}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 1
\pages 125--137
\crossref{https://doi.org/10.1134/S000143460801015X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254056300015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48849102018}
Linking options:
  • https://www.mathnet.ru/eng/mzm4340
  • https://doi.org/10.4213/mzm4340
  • https://www.mathnet.ru/eng/mzm/v83/i1/p139
  • This publication is cited in the following 22 articles:
    1. Vasiliev S.V., “An Inverse Spectral Problem For Sturm-Liouville Operators With Singular Potentials on Arbitrary Compact Graphs”, Tamkang J. Math., 50:3, SI (2019), 293–305  crossref  mathscinet  isi
    2. V. A. Yurko, “Inverse spectral problems for differential operators on spatial networks”, Russian Math. Surveys, 71:3 (2016), 539–584  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. A. A. Sedipkov, “Recovery of the discontinuities of the coefficient of a Sturm–Liouville operator in impedance form”, Siberian Math. J., 56:2 (2015), 367–372  mathnet  crossref  mathscinet  isi  elib  elib
    4. Yurko V., “Inverse Problems on Star-Type Graphs: Differential Operators of Different Orders on Different Edges”, Cent. Eur. J. Math., 12:3 (2014), 483–499  crossref  mathscinet  zmath  isi  scopus
    5. Yurko V., “Inverse Problems For Differential Operators of Variable Orders on Star-Type Graphs: General Case”, Anal. Math. Phys., 4:3 (2014), 247–262  crossref  mathscinet  zmath  isi  scopus
    6. Pikula M., Vladicic V., Markovic O., “A Solution to the Inverse Problem for the Sturm-Liouville-Type Equation with a Delay”, Filomat, 27:7 (2013), 1237–1245  crossref  mathscinet  zmath  isi  scopus
    7. Yurko V.A., “Recovering Variable Order Differential Operators on Star-Type Graphs From Spectra”, Differ. Equ., 49:12 (2013), 1490–1501  crossref  mathscinet  zmath  isi  scopus
    8. V. A. Yurko, “Edinstvennost vosstanovleniya differentsialnykh operatorov proizvolnykh poryadkov na nekompaktnykh prostranstvennykh setyakh”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 12:2 (2012), 33–41  mathnet  crossref  elib
    9. Yurko V.A., “Inverse spectral problems for arbitrary order differential operators on noncompact trees”, J. Inverse Ill-Posed Probl., 20:1 (2012), 111–131  crossref  mathscinet  zmath  isi  elib  scopus
    10. V. A. Yurko, “Inverse Problem for Sturm–Liouville Operators on Hedgehog-Type Graphs”, Math. Notes, 89:3 (2011), 438–449  mathnet  crossref  crossref  mathscinet  isi
    11. Yurko V.A., “Reconstruction of Sturm-Liouville differential operators on A-graphs”, Differ. Equ., 47:1 (2011), 50–59  crossref  mathscinet  zmath  isi  elib  elib  scopus
    12. Freiling G., Ignatyev M., “Spectral analysis for the Sturm-Liouville operator on sun-type graphs”, Inverse Problems, 27:9 (2011), 095003, 17 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    13. V. A. Yurko, “Edinstvennost resheniya obratnoi zadachi dlya differentsialnykh operatorov na proizvolnykh kompaktnykh grafakh”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 10:3 (2010), 33–38  mathnet  crossref
    14. Avdonin S., Kurasov P., Nowaczyk M., “Inverse problems for quantum trees II: recovering matching conditions for star graphs”, Inverse Probl. Imaging, 4:4 (2010), 579–598  crossref  mathscinet  zmath  isi  elib  scopus
    15. Yurko V.A., “Inverse spectral problems for differential operators on arbitrary compact graphs”, J. Inverse Ill-Posed Probl., 18:3 (2010), 245–261  crossref  mathscinet  zmath  isi  elib  scopus
    16. Yurko V. A., “An inverse spectral problem for differential operators on a hedgehog-type graph”, Dokl. Math., 79:2 (2009), 250–254  mathnet  crossref  mathscinet  mathscinet  zmath  isi  elib  elib  scopus
    17. V. A. Yurko, “Recovering Sturm-Liouville operators from spectra on a graph with a cycle”, Sb. Math., 200:9 (2009), 1403–1415  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. Yurko V. A., “Inverse spectral problems for Sturm-Liouville differential operators on a finite interval”, J. Inverse Ill-Posed Probl., 17:7 (2009), 639–694  crossref  mathscinet  zmath  isi  elib  scopus
    19. Yurko V., “Uniqueness of recovering Sturm-Liouville operators on A-graphs from spectra”, Results Math., 55:1-2 (2009), 199–207  crossref  mathscinet  zmath  isi  elib  scopus
    20. Yurko V., “Inverse problems for Sturm-Liouville operators on bush-type graphs”, Inverse Problems, 25:10 (2009), 105008, 14 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:782
    Full-text PDF :327
    References:102
    First page:11
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025