Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 72, Issue 3, Pages 356–362
DOI: https://doi.org/10.4213/mzm427
(Mi mzm427)
 

This article is cited in 10 scientific papers (total in 10 papers)

On a Remarkable Property of a Matrix of Mark Kac

Kh. D. Ikramov

M. V. Lomonosov Moscow State University
References:
Abstract: A triangular submatrix extracted in a special way from the Mark Kac matrix has a remarkable spectral property: if the order of its columns is reversed, then half of the eigenvalues do not change, whereas the other half are multiplied by -1. This fact discovered by this author somewhat earlier has had no explanation until now. Such an explanation is given in this paper.
Received: 19.09.2001
English version:
Mathematical Notes, 2002, Volume 72, Issue 3, Pages 325–330
DOI: https://doi.org/10.1023/A:1020543219652
Bibliographic databases:
UDC: 519.6
Language: Russian
Citation: Kh. D. Ikramov, “On a Remarkable Property of a Matrix of Mark Kac”, Mat. Zametki, 72:3 (2002), 356–362; Math. Notes, 72:3 (2002), 325–330
Citation in format AMSBIB
\Bibitem{Ikr02}
\by Kh.~D.~Ikramov
\paper On a Remarkable Property of a Matrix of Mark Kac
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 3
\pages 356--362
\mathnet{http://mi.mathnet.ru/mzm427}
\crossref{https://doi.org/10.4213/mzm427}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1963163}
\zmath{https://zbmath.org/?q=an:1028.15005}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 3
\pages 325--330
\crossref{https://doi.org/10.1023/A:1020543219652}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179160400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141513997}
Linking options:
  • https://www.mathnet.ru/eng/mzm427
  • https://doi.org/10.4213/mzm427
  • https://www.mathnet.ru/eng/mzm/v72/i3/p356
  • This publication is cited in the following 10 articles:
    1. WENCHANG CHU, EMRAH KILIÇ, “LEFT AND RIGHT EIGENVECTORS OF A VARIANT OF THE SYLVESTER–KAC MATRIX”, Bull. Aust. Math. Soc., 109:2 (2024), 316  crossref
    2. Abdullah Alazemi, Tim Hopkins, Emrah K{\i}lıç, “A four parameter extension to the Clement matrix and its role in numerical software testing”, Journal of Computational and Applied Mathematics, 450 (2024), 115986  crossref
    3. Zhibin Du, Carlos M. da Fonseca, “Sylvester–Kac matrices with quadratic spectra: A comprehensive note”, Ramanujan J, 2024  crossref
    4. Zhibin Du, Carlos M. da Fonseca, “A note on the eigenvalues of a Sylvester–Kac type matrix with off-diagonal biperiodic perturbations”, Journal of Computational and Applied Mathematics, 2024, 116429  crossref
    5. da Fonseca C.M., Kilic E., “A New Type of Sylvester-Kac Matrix and Its Spectrum”, Linear Multilinear Algebra, 69:6 (2021), 1072–1082  crossref  mathscinet  isi  scopus
    6. Da Fonseca C.M., Kilic E., Pereira A., “The Interesting Spectral Interlacing Property For a Certain Tridiagonal Matrix”, Electron. J. Linear Algebra, 36 (2020), 587–598  crossref  mathscinet  isi  scopus
    7. da Fonseca C.M., Kilic E., “An Observation on the Determinant of a Sylvester-Kac Type Matrix”, Analele Stiint. Univ. Ovidius C., 28:1 (2020), 111–115  crossref  mathscinet  isi  scopus
    8. da Fonseca C.M., “A Short Note on the Determinant of a Sylvester-Kac Type Matrix”, Int. J. Nonlinear Sci. Numer. Simul., 21:3-4 (2020), 361–362  crossref  mathscinet  isi  scopus
    9. Chu W., “Spectrum and Eigenvectors For a Class of Tridiagonal Matrices”, Linear Alg. Appl., 582 (2019), 499–516  crossref  mathscinet  isi  scopus
    10. da Fonseca C.M., Mazilu D.A., Mazilu I., Williams H.T., “The Eigenpairs of a Sylvester-Kac Type Matrix Associated with a Simple Model for One-Dimensional Deposition and Evaporation”, Appl. Math. Lett., 26:12 (2013), 1206–1211  crossref  mathscinet  zmath  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:472
    Full-text PDF :250
    References:106
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025