Abstract:
A triangular submatrix extracted in a special way from the Mark Kac matrix has a remarkable spectral property: if the order of its columns is reversed, then half of the eigenvalues do not change, whereas the other half are multiplied by -1. This fact discovered by this author somewhat earlier has had no explanation until now. Such an explanation is given in this paper.
\Bibitem{Ikr02}
\by Kh.~D.~Ikramov
\paper On a Remarkable Property of a Matrix of Mark Kac
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 3
\pages 356--362
\mathnet{http://mi.mathnet.ru/mzm427}
\crossref{https://doi.org/10.4213/mzm427}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1963163}
\zmath{https://zbmath.org/?q=an:1028.15005}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 3
\pages 325--330
\crossref{https://doi.org/10.1023/A:1020543219652}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179160400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141513997}
Linking options:
https://www.mathnet.ru/eng/mzm427
https://doi.org/10.4213/mzm427
https://www.mathnet.ru/eng/mzm/v72/i3/p356
This publication is cited in the following 10 articles:
WENCHANG CHU, EMRAH KILIÇ, “LEFT AND RIGHT EIGENVECTORS OF A VARIANT OF THE SYLVESTER–KAC MATRIX”, Bull. Aust. Math. Soc., 109:2 (2024), 316
Abdullah Alazemi, Tim Hopkins, Emrah K{\i}lıç, “A four parameter extension to the Clement matrix and its role in numerical software testing”, Journal of Computational and Applied Mathematics, 450 (2024), 115986
Zhibin Du, Carlos M. da Fonseca, “Sylvester–Kac matrices with quadratic spectra: A comprehensive note”, Ramanujan J, 2024
Zhibin Du, Carlos M. da Fonseca, “A note on the eigenvalues of a Sylvester–Kac type matrix with off-diagonal biperiodic perturbations”, Journal of Computational and Applied Mathematics, 2024, 116429
da Fonseca C.M., Kilic E., “A New Type of Sylvester-Kac Matrix and Its Spectrum”, Linear Multilinear Algebra, 69:6 (2021), 1072–1082
Da Fonseca C.M., Kilic E., Pereira A., “The Interesting Spectral Interlacing Property For a Certain Tridiagonal Matrix”, Electron. J. Linear Algebra, 36 (2020), 587–598
da Fonseca C.M., Kilic E., “An Observation on the Determinant of a Sylvester-Kac Type Matrix”, Analele Stiint. Univ. Ovidius C., 28:1 (2020), 111–115
da Fonseca C.M., “A Short Note on the Determinant of a Sylvester-Kac Type Matrix”, Int. J. Nonlinear Sci. Numer. Simul., 21:3-4 (2020), 361–362
Chu W., “Spectrum and Eigenvectors For a Class of Tridiagonal Matrices”, Linear Alg. Appl., 582 (2019), 499–516
da Fonseca C.M., Mazilu D.A., Mazilu I., Williams H.T., “The Eigenpairs of a Sylvester-Kac Type Matrix Associated with a Simple Model for One-Dimensional Deposition and Evaporation”, Appl. Math. Lett., 26:12 (2013), 1206–1211