Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 3, Pages 428–439
DOI: https://doi.org/10.4213/mzm4230
(Mi mzm4230)
 

This article is cited in 10 scientific papers (total in 10 papers)

Selection Principle for Pointwise Bounded Sequences of Functions

Yu. V. Tretyachenkoa, V. V. Chistyakovb

a N. I. Lobachevski State University of Nizhni Novgorod
b State University – Higher School of Economics, Nizhny Novgorod Branch
References:
Abstract: For a number $\varepsilon>0$ and a real function $f$ on an interval $[a,b]$, denote by $N(\varepsilon,f,[a,b])$ the least upper bound of the set of indices $n$ for which there is a family of disjoint intervals $[a_i,b_i]$, $i=1,\dots,n$, on $[a,b]$ such that $|f(a_i)-f(b_i)|>\varepsilon$ for any $i=1,\dots,n$ ($\sup\varnothing=0$). The following theorem is proved: \emph{if $\{f_j\}$ is a pointwise bounded sequence of real functions on the interval $[a,b]$ such that $n(\varepsilon)\equiv\limsup_{j\to\infty}N(\varepsilon,f_j,[a,b])<\infty$ for any $\varepsilon>0$, then the sequence $\{f_j\}$ contains a subsequence which converges, everywhere on $[a,b]$, to some function $f$ such that $N(\varepsilon,f,[a,b])\le n(\varepsilon)$ for any $\varepsilon>0$}. It is proved that the main condition in this theorem related to the upper limit is necessary for any uniformly convergent sequence $\{f_j\}$ and is “almost” necessary for any everywhere convergent sequence of measurable functions, and many pointwise selection principles generalizing Helly's classical theorem are consequences of our theorem. Examples are presented which illustrate the sharpness of the theorem.
Keywords: Helly's selection theorem, pointwise bounded function sequence, pointwise selection principle, measurable function, Cauchy sequence, Jordan variation.
Received: 08.06.2007
English version:
Mathematical Notes, 2008, Volume 84, Issue 3, Pages 396–406
DOI: https://doi.org/10.1134/S0001434608090101
Bibliographic databases:
UDC: 517.27, 517.544.4
Language: Russian
Citation: Yu. V. Tretyachenko, V. V. Chistyakov, “Selection Principle for Pointwise Bounded Sequences of Functions”, Mat. Zametki, 84:3 (2008), 428–439; Math. Notes, 84:3 (2008), 396–406
Citation in format AMSBIB
\Bibitem{TreChi08}
\by Yu.~V.~Tretyachenko, V.~V.~Chistyakov
\paper Selection Principle for Pointwise Bounded Sequences of Functions
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 3
\pages 428--439
\mathnet{http://mi.mathnet.ru/mzm4230}
\crossref{https://doi.org/10.4213/mzm4230}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2473759}
\zmath{https://zbmath.org/?q=an:1167.40002}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 3
\pages 396--406
\crossref{https://doi.org/10.1134/S0001434608090101}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260516700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-55149110626}
Linking options:
  • https://www.mathnet.ru/eng/mzm4230
  • https://doi.org/10.4213/mzm4230
  • https://www.mathnet.ru/eng/mzm/v84/i3/p428
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024