|
This article is cited in 4 scientific papers (total in 4 papers)
Critical $\Omega$-Fiber Formations of Finite Groups
M. M. Sorokina, N. V. Silenok I. G. Petrovsky Bryansk State Pedagogical University
Abstract:
Let $\mathfrak H$ be a class of finite groups. An $\Omega$-fiber formation $\mathfrak F$ of finite groups with direction $\varphi $ is said to be a minimal $\Omega$-fiber non-$\mathfrak H$-formation with direction $\varphi $, or briefly an $\mathfrak H_\Omega $-critical formation, if $\mathfrak F\nsubseteq \mathfrak H$, but any proper $\Omega$-fiber subformation with direction $\varphi $ in $\mathfrak F$ belongs to the class $\mathfrak H$. In the paper, a complete description of the structure of minimal $\Omega$-fiber non-$\mathfrak H$-formations of finite groups of two different directions is given.
Received: 28.07.2001
Citation:
M. M. Sorokina, N. V. Silenok, “Critical $\Omega$-Fiber Formations of Finite Groups”, Mat. Zametki, 72:2 (2002), 269–282; Math. Notes, 72:2 (2002), 241–252
Linking options:
https://www.mathnet.ru/eng/mzm421https://doi.org/10.4213/mzm421 https://www.mathnet.ru/eng/mzm/v72/i2/p269
|
Statistics & downloads: |
Abstract page: | 324 | Full-text PDF : | 181 | References: | 75 | First page: | 1 |
|