Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 3, Pages 384–391
DOI: https://doi.org/10.4213/mzm42
(Mi mzm42)
 

This article is cited in 4 scientific papers (total in 4 papers)

Uniform Stability of Local Extrema of an Integral Curve of an ODE of Second Order

I. P. Pavlotsky, M. Strianese
Full-text PDF (221 kB) Citations (4)
References:
Abstract: A second-order equation can have singular sets of first and second type, $S_1$ and $S_2$ (see the introduction), where the integral curve $x(y)$ does not exist in the ordinary sense but where it can be extended by using the first integral [1–5]. Denote by $Y$ the Cartesian axis $y=0$. If the function $x(y)$ has a derivative at a point of local extremum of this function, then this point belongs to $S_1\cup Y$. The extrema at which $y'(x)$ does not exist can be placed on $S_2$. In [5–8], the stability and instability of extrema on $S_1\cup S_2$ under small perturbations of the equation were considered, and the stability of the mutual arrangement of the maxima and minima of x(y) on the singular set was studied (locally as a rule, i.e., in small neighborhoods of singular points). In the present paper, sufficient conditions for the preservation of type of a local extremum on the finite part of $S_1$ or $S_2$ are found for the case in which the perturbation on all of this part does not exceed some explicitly indicated quantity which is the same on the entire singular set.
Received: 30.01.2003
English version:
Mathematical Notes, 2004, Volume 75, Issue 3, Pages 352–359
DOI: https://doi.org/10.1023/B:MATN.0000023314.11781.ce
Bibliographic databases:
UDC: 517.925.5
Language: Russian
Citation: I. P. Pavlotsky, M. Strianese, “Uniform Stability of Local Extrema of an Integral Curve of an ODE of Second Order”, Mat. Zametki, 75:3 (2004), 384–391; Math. Notes, 75:3 (2004), 352–359
Citation in format AMSBIB
\Bibitem{PavStr04}
\by I.~P.~Pavlotsky, M.~Strianese
\paper Uniform Stability of Local Extrema of an Integral Curve of an ODE of Second Order
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 3
\pages 384--391
\mathnet{http://mi.mathnet.ru/mzm42}
\crossref{https://doi.org/10.4213/mzm42}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068801}
\zmath{https://zbmath.org/?q=an:1062.34001}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 3
\pages 352--359
\crossref{https://doi.org/10.1023/B:MATN.0000023314.11781.ce}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221289900006}
Linking options:
  • https://www.mathnet.ru/eng/mzm42
  • https://doi.org/10.4213/mzm42
  • https://www.mathnet.ru/eng/mzm/v75/i3/p384
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024