Abstract:
In the open disk |z|<1 of the complex plane, we consider the following spaces of functions: the Bloch space B; the Hardy–Sobolev space Hαp, α⩾0, 0<p⩽∞; and the Hardy–Besov space Bαp, α⩾0, 0<p⩽∞. It is shown that if all the poles of the rational function R of degree n, n=1,2,3,…, lie in the domain |z|>1, then ‖R‖Hα1/α⩽cnα‖R‖B,
‖R‖Bα1/α⩽cnα‖R‖B,
where α>0 and c>0 depends only on α . The second of these inequalities for the case of the half-plane was obtained by Semmes in 1984. The proof given by Semmes was based on the use of Hankel operators, while our proof uses the special integral representation of rational functions.
Citation:
A. A. Pekarskii, “New Proof of the Semmes Inequality for the Derivative of the Rational Function”, Mat. Zametki, 72:2 (2002), 258–264; Math. Notes, 72:2 (2002), 230–236
\Bibitem{Pek02}
\by A.~A.~Pekarskii
\paper New Proof of the Semmes Inequality for the Derivative of the Rational Function
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 2
\pages 258--264
\mathnet{http://mi.mathnet.ru/mzm419}
\crossref{https://doi.org/10.4213/mzm419}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1942550}
\zmath{https://zbmath.org/?q=an:1130.30312}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 2
\pages 230--236
\crossref{https://doi.org/10.1023/A:1019802112633}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178299100024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141513946}
Linking options:
https://www.mathnet.ru/eng/mzm419
https://doi.org/10.4213/mzm419
https://www.mathnet.ru/eng/mzm/v72/i2/p258
This publication is cited in the following 4 articles:
F. G. Avkhadiev, I. R. Kayumov, S. R. Nasyrov, “Extremal problems in geometric function theory”, Russian Math. Surveys, 78:2 (2023), 211–271
A. D. Baranov, I. R. Kayumov, “Estimates for the
integrals of derivatives of rational functions in multiply connected
domains in the plane”, Izv. Math., 86:5 (2022), 839–851
Baranov A., Zarouf R., “The Differentiation Operator From Model Spaces to Bergman Spaces and Peller Type Inequalities”, J. Anal. Math., 137:1 (2019), 189–209
R. F. Shamoyan, “Kharakterizatsii tipa VMO, diagonalnoe otobrazhenie i ogranichennnost integralnykh operatorov v nekotorykh prostranstvakh analiticheskikh funktsii”, Vladikavk. matem. zhurn., 9:2 (2007), 40–53