Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 72, Issue 2, Pages 258–264
DOI: https://doi.org/10.4213/mzm419
(Mi mzm419)
 

This article is cited in 4 scientific papers (total in 4 papers)

New Proof of the Semmes Inequality for the Derivative of the Rational Function

A. A. Pekarskii

Yanka Kupala State University of Grodno
Full-text PDF (190 kB) Citations (4)
References:
Abstract: In the open disk |z|<1 of the complex plane, we consider the following spaces of functions: the Bloch space B; the Hardy–Sobolev space Hαp, α0, 0<p; and the Hardy–Besov space Bαp, α0, 0<p. It is shown that if all the poles of the rational function R of degree n, n=1,2,3,, lie in the domain |z|>1, then RHα1/αcnαRB, RBα1/αcnαRB, where α>0 and c>0 depends only on α . The second of these inequalities for the case of the half-plane was obtained by Semmes in 1984. The proof given by Semmes was based on the use of Hankel operators, while our proof uses the special integral representation of rational functions.
Received: 10.09.1998
English version:
Mathematical Notes, 2002, Volume 72, Issue 2, Pages 230–236
DOI: https://doi.org/10.1023/A:1019802112633
Bibliographic databases:
UDC: 517.53
Language: Russian
Citation: A. A. Pekarskii, “New Proof of the Semmes Inequality for the Derivative of the Rational Function”, Mat. Zametki, 72:2 (2002), 258–264; Math. Notes, 72:2 (2002), 230–236
Citation in format AMSBIB
\Bibitem{Pek02}
\by A.~A.~Pekarskii
\paper New Proof of the Semmes Inequality for the Derivative of the Rational Function
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 2
\pages 258--264
\mathnet{http://mi.mathnet.ru/mzm419}
\crossref{https://doi.org/10.4213/mzm419}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1942550}
\zmath{https://zbmath.org/?q=an:1130.30312}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 2
\pages 230--236
\crossref{https://doi.org/10.1023/A:1019802112633}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178299100024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141513946}
Linking options:
  • https://www.mathnet.ru/eng/mzm419
  • https://doi.org/10.4213/mzm419
  • https://www.mathnet.ru/eng/mzm/v72/i2/p258
  • This publication is cited in the following 4 articles:
    1. F. G. Avkhadiev, I. R. Kayumov, S. R. Nasyrov, “Extremal problems in geometric function theory”, Russian Math. Surveys, 78:2 (2023), 211–271  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. A. D. Baranov, I. R. Kayumov, “Estimates for the integrals of derivatives of rational functions in multiply connected domains in the plane”, Izv. Math., 86:5 (2022), 839–851  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Baranov A., Zarouf R., “The Differentiation Operator From Model Spaces to Bergman Spaces and Peller Type Inequalities”, J. Anal. Math., 137:1 (2019), 189–209  crossref  mathscinet  isi  scopus
    4. R. F. Shamoyan, “Kharakterizatsii tipa VMO, diagonalnoe otobrazhenie i ogranichennnost integralnykh operatorov v nekotorykh prostranstvakh analiticheskikh funktsii”, Vladikavk. matem. zhurn., 9:2 (2007), 40–53  mathnet  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:553
    Full-text PDF :225
    References:71
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025