Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 82, Issue 6, Pages 885–890
DOI: https://doi.org/10.4213/mzm4187
(Mi mzm4187)
 

On the Univalence of Derivatives of Functions which are Univalent in Angular Domains

S. R. Nasyrov

Kazan State University
References:
Abstract: We consider functions $f$ that are univalent in a plane angular domain of angle $\alpha\pi$, $0<\alpha\le2$. It is proved that there exists a natural number $k$ depending only on $\alpha$ such that the $k$th derivatives $f^{(k)}$ of these functions cannot be univalent in this angle. We find the least of the possible values of for $k$. As a consequence, we obtain an answer to the question posed by Kiryatskii: if $f$ is univalent in the half-plane, then its fourth derivative cannot be univalent in this half-plane.
Keywords: univalent function, holomorphic function, Bieberbach's conjecture, Koebe function, Weierstrass theorem.
Received: 26.03.2007
English version:
Mathematical Notes, 2007, Volume 82, Issue 6, Pages 798–802
DOI: https://doi.org/10.1134/S0001434607110235
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: S. R. Nasyrov, “On the Univalence of Derivatives of Functions which are Univalent in Angular Domains”, Mat. Zametki, 82:6 (2007), 885–890; Math. Notes, 82:6 (2007), 798–802
Citation in format AMSBIB
\Bibitem{Nas07}
\by S.~R.~Nasyrov
\paper On the Univalence of Derivatives of Functions which are Univalent in Angular Domains
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 6
\pages 885--890
\mathnet{http://mi.mathnet.ru/mzm4187}
\crossref{https://doi.org/10.4213/mzm4187}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2399967}
\zmath{https://zbmath.org/?q=an:1183.30014}
\elib{https://elibrary.ru/item.asp?id=9901591}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 6
\pages 798--802
\crossref{https://doi.org/10.1134/S0001434607110235}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252128700023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38349075342}
Linking options:
  • https://www.mathnet.ru/eng/mzm4187
  • https://doi.org/10.4213/mzm4187
  • https://www.mathnet.ru/eng/mzm/v82/i6/p885
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:571
    Full-text PDF :211
    References:73
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024