Abstract:
For each p>1, we obtain a lower bound for the distances to the real axis from the poles of simplest fractions (i.e., logarithmic derivatives of polynomials) bounded by 1 in the norm of Lp on this axis; this estimate improves the first estimate of such kind derived by Danchenko in 1994. For p=2, the estimate turns out to be sharp. Similar estimates are obtained for the distances from the poles of simplest fractions to the vertices of angles and rays.
Citation:
P. A. Borodin, “Estimates of the Distances to Direct Lines and Rays from the Poles of Simplest Fractions Bounded in the Norm of Lp on These Sets”, Mat. Zametki, 82:6 (2007), 803–810; Math. Notes, 82:6 (2007), 725–732
\Bibitem{Bor07}
\by P.~A.~Borodin
\paper Estimates of the Distances to Direct Lines and Rays from the Poles of Simplest Fractions Bounded in the Norm of~$L_p$ on These Sets
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 6
\pages 803--810
\mathnet{http://mi.mathnet.ru/mzm4180}
\crossref{https://doi.org/10.4213/mzm4180}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2399960}
\zmath{https://zbmath.org/?q=an:1163.26005}
\elib{https://elibrary.ru/item.asp?id=9901584}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 6
\pages 725--732
\crossref{https://doi.org/10.1134/S0001434607110168}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252128700016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38349060982}
Linking options:
https://www.mathnet.ru/eng/mzm4180
https://doi.org/10.4213/mzm4180
https://www.mathnet.ru/eng/mzm/v82/i6/p803
This publication is cited in the following 10 articles: