Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 87, Issue 3, Pages 412–416
DOI: https://doi.org/10.4213/mzm4171
(Mi mzm4171)
 

This article is cited in 7 scientific papers (total in 7 papers)

Abelian Groups as $\mathrm{UA}$-Modules over the Ring $\mathbb Z$

O. V. Ljubimtseva, D. S. Chistyakovb

a Nizhny Novgorod State University of Architecture and Civil Engineering
b N. I. Lobachevski State University of Nizhni Novgorod
Full-text PDF (408 kB) Citations (7)
References:
Abstract: Let $V$ be a module over a ring $R$. The module $V$ is called a unique addition module (a $\mathrm{UA}$-module) if there is no new addition on the set $V$ without changing the action of $R$ on $V$. In the paper, the $\mathrm{UA}$-modules over the ring $\mathbb Z$ are found.
Keywords: unitary module over an associative ring, unique addition module, mixed Abelian group, strongly servant subgroup, divisible group, reduced group.
Received: 15.11.2005
Revised: 25.09.2009
English version:
Mathematical Notes, 2010, Volume 87, Issue 3, Pages 380–383
DOI: https://doi.org/10.1134/S0001434610030090
Bibliographic databases:
Document Type: Article
UDC: 512.541
Language: Russian
Citation: O. V. Ljubimtsev, D. S. Chistyakov, “Abelian Groups as $\mathrm{UA}$-Modules over the Ring $\mathbb Z$”, Mat. Zametki, 87:3 (2010), 412–416; Math. Notes, 87:3 (2010), 380–383
Citation in format AMSBIB
\Bibitem{LjuChi10}
\by O.~V.~Ljubimtsev, D.~S.~Chistyakov
\paper Abelian Groups as $\mathrm{UA}$-Modules over the Ring~$\mathbb Z$
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 3
\pages 412--416
\mathnet{http://mi.mathnet.ru/mzm4171}
\crossref{https://doi.org/10.4213/mzm4171}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2761597}
\zmath{https://zbmath.org/?q=an:05791060}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 3
\pages 380--383
\crossref{https://doi.org/10.1134/S0001434610030090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279034600009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954019982}
Linking options:
  • https://www.mathnet.ru/eng/mzm4171
  • https://doi.org/10.4213/mzm4171
  • https://www.mathnet.ru/eng/mzm/v87/i3/p412
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:566
    Full-text PDF :192
    References:100
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024