Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 6, Pages 882–887
DOI: https://doi.org/10.4213/mzm4168
(Mi mzm4168)
 

This article is cited in 2 scientific papers (total in 2 papers)

Best Local Approximation by Simplest Fractions

Ya. V. Novak

Institute of Mathematics, Ukrainian National Academy of Sciences
Full-text PDF (400 kB) Citations (2)
References:
Abstract: In this paper, we present two theorems on best local approximation by simplest fractions, i.e., by logarithmic derivatives of algebraic polynomials with complex coefficients. In Theorem 1, we obtain an analog of Bernstein's well-known theorem on the description of $n$-times continuously differentiable functions on the closed interval $\Delta\subset\mathbb R$ in terms of local approximations in the uniform metric by algebraic polynomials. Theorem 2 describes the simplest Padé fraction as the limit of the sequence of simplest fractions of best uniform approximation and is an analog of Walsh's well-known result on the classical Padé fractions.
Keywords: best local approximation by simplest fractions, algebraic polynomial, Walsh's theorem, Padé simplest fraction.
Received: 23.10.2007
English version:
Mathematical Notes, 2008, Volume 84, Issue 6, Pages 821–825
DOI: https://doi.org/10.1134/S0001434608110254
Bibliographic databases:
UDC: 517.538.5
Language: Russian
Citation: Ya. V. Novak, “Best Local Approximation by Simplest Fractions”, Mat. Zametki, 84:6 (2008), 882–887; Math. Notes, 84:6 (2008), 821–825
Citation in format AMSBIB
\Bibitem{Nov08}
\by Ya.~V.~Novak
\paper Best Local Approximation by Simplest Fractions
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 6
\pages 882--887
\mathnet{http://mi.mathnet.ru/mzm4168}
\crossref{https://doi.org/10.4213/mzm4168}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2492803}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 6
\pages 821--825
\crossref{https://doi.org/10.1134/S0001434608110254}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262855600025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59749087144}
Linking options:
  • https://www.mathnet.ru/eng/mzm4168
  • https://doi.org/10.4213/mzm4168
  • https://www.mathnet.ru/eng/mzm/v84/i6/p882
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:488
    Full-text PDF :201
    References:72
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024