Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 2, Pages 175–192
DOI: https://doi.org/10.4213/mzm4165
(Mi mzm4165)
 

This article is cited in 28 scientific papers (total in 28 papers)

Linear Relations as Generators of Semigroups of Operators

A. G. Baskakov

Voronezh State University
References:
Abstract: The theory of semigroups of bounded linear operators is based on the spectral theory of linear relations (multivalued linear operators), which act as generators of operator semigroups.
Keywords: semigroup, bounded linear operator, linear relation (multivalued linear operator), spectral theory, primitive generator of a semigroup, resolvent set of a linear relation, ergodic theorem, holomorphic function.
Received: 22.03.2007
Revised: 15.01.2008
English version:
Mathematical Notes, 2008, Volume 84, Issue 2, Pages 166–183
DOI: https://doi.org/10.1134/S0001434608070183
Bibliographic databases:
UDC: 517.984+517.986
Language: Russian
Citation: A. G. Baskakov, “Linear Relations as Generators of Semigroups of Operators”, Mat. Zametki, 84:2 (2008), 175–192; Math. Notes, 84:2 (2008), 166–183
Citation in format AMSBIB
\Bibitem{Bas08}
\by A.~G.~Baskakov
\paper Linear Relations as Generators of Semigroups of Operators
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 2
\pages 175--192
\mathnet{http://mi.mathnet.ru/mzm4165}
\crossref{https://doi.org/10.4213/mzm4165}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2475046}
\elib{https://elibrary.ru/item.asp?id=13591490}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 2
\pages 166--183
\crossref{https://doi.org/10.1134/S0001434608070183}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000258855600018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-50849124726}
Linking options:
  • https://www.mathnet.ru/eng/mzm4165
  • https://doi.org/10.4213/mzm4165
  • https://www.mathnet.ru/eng/mzm/v84/i2/p175
  • This publication is cited in the following 28 articles:
    1. Yanyan Du, Junjie Huang, “Essential spectra of upper triangular relation matrices”, Monatsh Math, 200:1 (2023), 43  crossref
    2. Marko Kostic, “Abstract degenerate Volterra inclusions in locally convex spaces”, ejde, 2023:01-?? (2023), 63  crossref
    3. M. S. Bichegkuev, “Almost periodic at infinity solutions to integro-differential equations with non-invertible operator at derivative”, Ufa Math. J., 12:1 (2020), 3–12  mathnet  crossref  isi
    4. Baskakov A., Obukhovskii V., Zecca P., “Almost Periodic Solutions At Infinity of Differential Equations and Inclusions”, J. Math. Anal. Appl., 462:1 (2018), 747–763  crossref  mathscinet  zmath  isi  scopus
    5. Ammar A., “Some Results on Semi-Fredholm Perturbations of Multivalued Linear Operators”, Linear Multilinear Algebra, 66:7 (2018), 1311–1332  crossref  mathscinet  zmath  isi  scopus
    6. Baskakov A.G., Krishtal I.A., “Spectral Properties of An Operator Polynomial With Coefficients in a Banach Algebra”, Frames and Harmonic Analysis, Contemporary Mathematics, 706, eds. Kim Y., Narayan S., Picioroaga G., Weber E., Amer Mathematical Soc, 2018, 93–114  crossref  mathscinet  isi  scopus
    7. A. G. Baskakov, V. D. Kharitonov, “Spectral Analysis of Operator Polynomials and Higher-Order Difference Operators”, Math. Notes, 101:3 (2017), 391–405  mathnet  crossref  crossref  mathscinet  isi  elib
    8. Ammar A., Jeribi A., Saadaoui B., “Frobenius–Schur Factorization for Multivalued
      \varvec2×2
      2 2 Matrices Linear Operator”, Mediterr. J. Math., 14:1 (2017), UNSP 29  crossref  mathscinet  isi  elib  scopus
    9. Baskakov A.G. Krishtal I.A., “Spectral Analysis of Abstract Parabolic Operators in Homogeneous Function Spaces”, Mediterr. J. Math., 13:5 (2016), 2443–2462  crossref  mathscinet  zmath  isi  scopus
    10. Aymen Ammar, Toka Diagana, Aref Jeribi, “Perturbations of Fredholm linear relations in Banach spaces with application to <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mn>3</mml:mn><mml:mo>×</mml:mo><mml:mn>3</mml:mn></mml:math>-”, Arab Journal of Mathematical Sciences, 22:1 (2016), 59  crossref
    11. A. G. Baskakov, “Harmonic and Spectral Analysis of Power Bounded Operators and Bounded Semigroups of Operators on Banach Spaces”, Math. Notes, 97:2 (2015), 164–178  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    12. A. G. Baskakov, A. Yu. Duplishcheva, “Difference operators and operator-valued matrices of the second order”, Izv. Math., 79:2 (2015), 217–232  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. A. G. Baskakov, “Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations”, Sb. Math., 206:8 (2015), 1049–1086  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. M. S. Bichegkuev, “Spectral analysis of differential operators with unbounded operator coefficients on the half-line”, Diff Equat, 51:4 (2015), 431  crossref
    15. Aymen Ammar, Mohammed Zerai Dhahri, Aref Jeribi, “Some properties of upper triangular 3×3 3 × 3 -block matrices of linear relations”, Boll Unione Mat Ital, 8:3 (2015), 189  crossref
    16. Verdier O., “Reductions of Operator Pencils”, Math. Comput., 83:285 (2014), 189–214  crossref  mathscinet  zmath  isi  scopus
    17. A. G. Baskakov, N. S. Kaluzhina, D. M. Polyakov, “Slowly varying on infinity semigroups of operators”, Russian Math. (Iz. VUZ), 58:7 (2014), 1–10  mathnet  crossref
    18. V. M. Bruk, “On Linear Relations Generated by an Integro-Differential Equation with Nevanlinna Measure in the Infinite-Dimensional Case”, Math. Notes, 96:1 (2014), 10–25  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    19. Alvarez T., Ammar A., Jeribi A., “On the Essential Spectra of Some Matrix of Linear Relations”, Math. Meth. Appl. Sci., 37:5 (2014), 620–644  crossref  mathscinet  zmath  isi  scopus
    20. A. G. Chshiev, “Ob obraschenii polugruppy operatorov”, Vladikavk. matem. zhurn., 16:2 (2014), 79–89  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1051
    Full-text PDF :338
    References:82
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025