Abstract:
We prove that a fork-convex family W of nonnegative stochastic processes has an equivalent supermartingale density if and only if the set H of nonnegative random variables majorized by the values of elements of W at fixed instants of time is bounded in probability. A securities market model with arbitrarily many main risky assets, specified by the set W(S) of nonnegative stochastic integrals with respect to finite collections of semimartingales from an arbitrary indexed family S, satisfies the assumptions of this theorem.
Keywords:
stochastic process, fork-convex family, supermartingale, semimartingale, securities market, probability space, convergence in probability, stochastic integral.
Citation:
D. B. Rokhlin, “On the Existence of an Equivalent Supermartingale Density for a Fork-Convex Family of Stochastic Processes”, Mat. Zametki, 87:4 (2010), 594–603; Math. Notes, 87:4 (2010), 556–563
\Bibitem{Rok10}
\by D.~B.~Rokhlin
\paper On the Existence of an Equivalent Supermartingale Density for a Fork-Convex Family of Stochastic Processes
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 4
\pages 594--603
\mathnet{http://mi.mathnet.ru/mzm4151}
\crossref{https://doi.org/10.4213/mzm4151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2762746}
\zmath{https://zbmath.org/?q=an:05791084}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 4
\pages 556--563
\crossref{https://doi.org/10.1134/S0001434610030338}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279034600033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953993398}
Linking options:
https://www.mathnet.ru/eng/mzm4151
https://doi.org/10.4213/mzm4151
https://www.mathnet.ru/eng/mzm/v87/i4/p594
This publication is cited in the following 5 articles:
A. A. Farvazova, “Robust utility maximization in terms of supermartingale measures”, Moscow University Mathematics Bulletin, 77:6 (2022), 20–26
Mostovyi O., Sirbu M., “Optimal Investment and Consumption With Labor Income in Incomplete Markets”, Ann. Appl. Probab., 30:2 (2020), 747–787
Imkeller P., Perkowski N., “the Existence of Dominating Local Martingale Measures”, Financ. Stoch., 19:4 (2015), 685–717
Christa Cuchiero, Josef Teichmann, “A convergence result for the Emery topology and a variant of the proof of the fundamental theorem of asset pricing”, Finance Stoch, 19:4 (2015), 743
Anna Aksamit, Tahir Choulli, Monique Jeanblanc, Lecture Notes in Mathematics, 2137, In Memoriam Marc Yor - Séminaire de Probabilités XLVII, 2015, 187