Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 87, Issue 4, Pages 594–603
DOI: https://doi.org/10.4213/mzm4151
(Mi mzm4151)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the Existence of an Equivalent Supermartingale Density for a Fork-Convex Family of Stochastic Processes

D. B. Rokhlin

Southern Federal University
Full-text PDF (476 kB) Citations (5)
References:
Abstract: We prove that a fork-convex family W of nonnegative stochastic processes has an equivalent supermartingale density if and only if the set H of nonnegative random variables majorized by the values of elements of W at fixed instants of time is bounded in probability. A securities market model with arbitrarily many main risky assets, specified by the set W(S) of nonnegative stochastic integrals with respect to finite collections of semimartingales from an arbitrary indexed family S, satisfies the assumptions of this theorem.
Keywords: stochastic process, fork-convex family, supermartingale, semimartingale, securities market, probability space, convergence in probability, stochastic integral.
Received: 04.06.2007
Revised: 15.08.2009
English version:
Mathematical Notes, 2010, Volume 87, Issue 4, Pages 556–563
DOI: https://doi.org/10.1134/S0001434610030338
Bibliographic databases:
Document Type: Article
UDC: 519.216.8
Language: Russian
Citation: D. B. Rokhlin, “On the Existence of an Equivalent Supermartingale Density for a Fork-Convex Family of Stochastic Processes”, Mat. Zametki, 87:4 (2010), 594–603; Math. Notes, 87:4 (2010), 556–563
Citation in format AMSBIB
\Bibitem{Rok10}
\by D.~B.~Rokhlin
\paper On the Existence of an Equivalent Supermartingale Density for a Fork-Convex Family of Stochastic Processes
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 4
\pages 594--603
\mathnet{http://mi.mathnet.ru/mzm4151}
\crossref{https://doi.org/10.4213/mzm4151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2762746}
\zmath{https://zbmath.org/?q=an:05791084}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 4
\pages 556--563
\crossref{https://doi.org/10.1134/S0001434610030338}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279034600033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953993398}
Linking options:
  • https://www.mathnet.ru/eng/mzm4151
  • https://doi.org/10.4213/mzm4151
  • https://www.mathnet.ru/eng/mzm/v87/i4/p594
  • This publication is cited in the following 5 articles:
    1. A. A. Farvazova, “Robust utility maximization in terms of supermartingale measures”, Moscow University Mathematics Bulletin, 77:6 (2022), 20–26  mathnet  crossref  mathscinet  zmath
    2. Mostovyi O., Sirbu M., “Optimal Investment and Consumption With Labor Income in Incomplete Markets”, Ann. Appl. Probab., 30:2 (2020), 747–787  crossref  mathscinet  isi
    3. Imkeller P., Perkowski N., “the Existence of Dominating Local Martingale Measures”, Financ. Stoch., 19:4 (2015), 685–717  crossref  mathscinet  zmath  isi  elib  scopus
    4. Christa Cuchiero, Josef Teichmann, “A convergence result for the Emery topology and a variant of the proof of the fundamental theorem of asset pricing”, Finance Stoch, 19:4 (2015), 743  crossref
    5. Anna Aksamit, Tahir Choulli, Monique Jeanblanc, Lecture Notes in Mathematics, 2137, In Memoriam Marc Yor - Séminaire de Probabilités XLVII, 2015, 187  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:526
    Full-text PDF :195
    References:68
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025