Abstract:
In this paper, we study the continuity properties of the solution to a boundary-value problem for the radiation transfer equation with generalized conjugation conditions at the interface of media. We establish the solvability of the boundary-value problem and obtain estimates of the maximum principle type. It is shown that the Fresnel component in the conjugation operator significantly complicates the structure of the set on which the solution of the boundary-value problem is continuous.
Keywords:
radiation transfer equation, boundary-value problem, conjugation operator, Fresnel reflection, diffuse reflection, reflection indicatrix, Snell's law, index of refraction.
Citation:
I. V. Prokhorov, “On the Structure of the Continuity Set of the Solution to a Boundary-Value Problem for the Radiation Transfer Equation”, Mat. Zametki, 86:2 (2009), 256–272; Math. Notes, 86:2 (2009), 234–248
\Bibitem{Pro09}
\by I.~V.~Prokhorov
\paper On the Structure of the Continuity Set of the Solution to a Boundary-Value Problem for the Radiation Transfer Equation
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 2
\pages 256--272
\mathnet{http://mi.mathnet.ru/mzm4149}
\crossref{https://doi.org/10.4213/mzm4149}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2584559}
\zmath{https://zbmath.org/?q=an:1178.35282}
\elib{https://elibrary.ru/item.asp?id=15306208}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 2
\pages 234--248
\crossref{https://doi.org/10.1134/S0001434609070256}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269660400025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76249132720}
Linking options:
https://www.mathnet.ru/eng/mzm4149
https://doi.org/10.4213/mzm4149
https://www.mathnet.ru/eng/mzm/v86/i2/p256
This publication is cited in the following 16 articles:
Chebotarev A.Yu., Kovtanyuk A.E., “Quasi-Static Diffusion Model of Complex Heat Transfer With Reflection and Refraction Conditions”, J. Math. Anal. Appl., 507:1 (2022), 125745
I. V. Prokhorov, “The Cauchy Problem for the Radiation Transfer Equation with Fresnel and Lambert Matching Conditions”, Math. Notes, 105:1 (2019), 80–90
A. Kim, I. V. Prokhorov, “Initial-boundary value problem for a radiative transfer equation with generalized matching conditions”, Sib. elektron. matem. izv., 16 (2019), 1036–1056
Yarovenko I.P., Prokhorov I.V., “Determination of Refractive Indices of a Layered Medium Under Pulsed Irradiation”, Opt. Spectrosc., 124:4 (2018), 567–574
I. V. Prokhorov, A. A. Suschenko, “Zadacha Koshi dlya uravneniya perenosa izlucheniya v neogranichennoi srede”, Dalnevost. matem. zhurn., 18:1 (2018), 101–111
A. Kim, I. V. Prokhorov, “Theoretical and numerical analysis of an initial-boundary value problem for the radiative transfer equation with Fresnel matching conditions”, Comput. Math. Math. Phys., 58:5 (2018), 735–749
I. V. Prokhorov, A. A. Sushchenko, A. Kim, “An initial boundary value problem for the radiative transfer equation with diffusion matching conditions”, J. Appl. Industr. Math., 11:1 (2017), 115–124
Vornovskikh P.A., Sushchenko A.A., “Remote Sensing Problem With Multiple Scattering Effect”, 23Rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Proceedings of Spie, 10466, no. 1, eds. Matvienko G., Romanovskii O., Spie-Int Soc Optical Engineering, 2017, UNSP 104661Y
Filimonov M., Vaganova N., “Permafrost Thawing From Different Technical Systems in Arctic Regions”, International Conference on Sustainable Cities, IOP Conf. Ser. Earth Envir. Sci., IOP Conference Series-Earth and Environmental Science, 72, IOP Publishing Ltd, 2017, UNSP 012006
A. A. Amosov, “Radiative Transfer Equation with Fresnel Reflection and Refraction Conditions in a System of Bodies with Piecewise Smooth Boundaries”, J Math Sci, 219:6 (2016), 821
I. V. Prokhorov, A. A. Sushchenko, “On the well-posedness of the Cauchy problem for the equation of radiative transfer with Fresnel matching conditions”, Siberian Math. J., 56:4 (2015), 736–745
I.V. Prokhorov, A.A. Sushchenko, “Imaging Based on Signal from Side-Scan Sonar”, AMM, 756 (2015), 678
I. V. Prokhorov, “The Cauchy problem for the radiative transfer equation with generalized conjugation conditions”, Comput. Math. Math. Phys., 53:5 (2013), 588–600
Timofeev Yu.M., Shul'gina E.M., “Russian Investigations in the Field of Atmospheric Radiation in 2007-2010”, Izv. Atmos. Ocean. Phys., 49:1 (2013), 16–32
I. V. Prokhorov, “Solvability of the initial-boundary value problem for an integrodifferential equation”, Siberian Math. J., 53:2 (2012), 301–309
I. V. Prokhorov, V. V. Zolotarev, I. B. Agafonov, “Zadacha akusticheskogo zondirovaniya vo fluktuiruyuschem okeane”, Dalnevost. matem. zhurn., 11:1 (2011), 76–87