|
A Necessary Condition for the Completeness of the System {e−λnt∣Reλn>0} in the Spaces C0(R+) and Lp(R+), p>2
I. O. Krasnobaev M. V. Lomonosov Moscow State University
Abstract:
We obtain a necessary condition for the completeness of the system
e(Λ)={e−λnt∣Reλn>0,n∈Z}
in
the spaces C0 and Lp(R+), p>2, for the case in which the set of limit points of the sequence {λn} is countable and separable.
Keywords:
sequence of exponentials, the spaces C0(R+) and Lp(R+), p>2, Szász condition, Hardy class of functions, Bernstein's inequality, analytic function.
Received: 30.07.2007
Citation:
I. O. Krasnobaev, “A Necessary Condition for the Completeness of the System {e−λnt∣Reλn>0} in the Spaces C0(R+) and Lp(R+), p>2”, Mat. Zametki, 83:6 (2008), 831–842; Math. Notes, 83:6 (2008), 759–769
Linking options:
https://www.mathnet.ru/eng/mzm4132https://doi.org/10.4213/mzm4132 https://www.mathnet.ru/eng/mzm/v83/i6/p831
|
Statistics & downloads: |
Abstract page: | 405 | Full-text PDF : | 192 | References: | 48 | First page: | 13 |
|