Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 83, Issue 6, Pages 831–842
DOI: https://doi.org/10.4213/mzm4132
(Mi mzm4132)
 

A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces $C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$

I. O. Krasnobaev

M. V. Lomonosov Moscow State University
References:
Abstract: We obtain a necessary condition for the completeness of the system
$$ e(\Lambda)=\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0,\,n\in\mathbb Z\} $$
in the spaces $C_0$ and $L^p(\mathbb R_+)$, $p>2$, for the case in which the set of limit points of the sequence $\{\lambda_n\}$ is countable and separable.
Keywords: sequence of exponentials, the spaces $C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$, Szász condition, Hardy class of functions, Bernstein's inequality, analytic function.
Received: 30.07.2007
English version:
Mathematical Notes, 2008, Volume 83, Issue 6, Pages 759–769
DOI: https://doi.org/10.1134/S0001434608050222
Bibliographic databases:
UDC: 517.538.2
Language: Russian
Citation: I. O. Krasnobaev, “A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces $C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$”, Mat. Zametki, 83:6 (2008), 831–842; Math. Notes, 83:6 (2008), 759–769
Citation in format AMSBIB
\Bibitem{Kra08}
\by I.~O.~Krasnobaev
\paper A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces~$C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 6
\pages 831--842
\mathnet{http://mi.mathnet.ru/mzm4132}
\crossref{https://doi.org/10.4213/mzm4132}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2451388}
\zmath{https://zbmath.org/?q=an:1170.46014}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 6
\pages 759--769
\crossref{https://doi.org/10.1134/S0001434608050222}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257399900022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-46749151820}
Linking options:
  • https://www.mathnet.ru/eng/mzm4132
  • https://doi.org/10.4213/mzm4132
  • https://www.mathnet.ru/eng/mzm/v83/i6/p831
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:374
    Full-text PDF :177
    References:36
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024