|
A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces $C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$
I. O. Krasnobaev M. V. Lomonosov Moscow State University
Abstract:
We obtain a necessary condition for the completeness of the system
$$
e(\Lambda)=\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0,\,n\in\mathbb Z\}
$$
in
the spaces $C_0$ and $L^p(\mathbb R_+)$, $p>2$, for the case in which the set of limit points of the sequence $\{\lambda_n\}$ is countable and separable.
Keywords:
sequence of exponentials, the spaces $C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$, Szász condition, Hardy class of functions, Bernstein's inequality, analytic function.
Received: 30.07.2007
Citation:
I. O. Krasnobaev, “A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces $C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$”, Mat. Zametki, 83:6 (2008), 831–842; Math. Notes, 83:6 (2008), 759–769
Linking options:
https://www.mathnet.ru/eng/mzm4132https://doi.org/10.4213/mzm4132 https://www.mathnet.ru/eng/mzm/v83/i6/p831
|
Statistics & downloads: |
Abstract page: | 374 | Full-text PDF : | 177 | References: | 36 | First page: | 13 |
|