Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 3, Pages 408–420
DOI: https://doi.org/10.4213/mzm4128
(Mi mzm4128)
 

This article is cited in 7 scientific papers (total in 7 papers)

The Behavior of Solutions of Semilinear Elliptic Equations of Second Order of the Form $Lu=e^u$ in the Infinite Cylinder

A. V. Neklyudov

N. E. Bauman Moscow State Technical University
Full-text PDF (479 kB) Citations (7)
References:
Abstract: We consider a semilinear elliptic equation of second order with variable coefficients of the form $Lu=e^u$ in the semi-infinite cylinder whose solution satisfies a homogeneous Neumann condition on the lateral surface of the cylinder.
Keywords: semilinear elliptic equation, Neumann boundary condition, Dirichlet integral, Poincaré inequality, Hölder's inequality.
Received: 10.10.2007
English version:
Mathematical Notes, 2009, Volume 85, Issue 3, Pages 397–408
DOI: https://doi.org/10.1134/S0001434609030109
Bibliographic databases:
UDC: 517.956.223
Language: Russian
Citation: A. V. Neklyudov, “The Behavior of Solutions of Semilinear Elliptic Equations of Second Order of the Form $Lu=e^u$ in the Infinite Cylinder”, Mat. Zametki, 85:3 (2009), 408–420; Math. Notes, 85:3 (2009), 397–408
Citation in format AMSBIB
\Bibitem{Nek09}
\by A.~V.~Neklyudov
\paper The Behavior of Solutions of Semilinear Elliptic Equations of Second Order of the Form $Lu=e^u$ in the Infinite Cylinder
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 3
\pages 408--420
\mathnet{http://mi.mathnet.ru/mzm4128}
\crossref{https://doi.org/10.4213/mzm4128}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2548048}
\zmath{https://zbmath.org/?q=an:1177.35086}
\elib{https://elibrary.ru/item.asp?id=15306603}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 3
\pages 397--408
\crossref{https://doi.org/10.1134/S0001434609030109}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266561100010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949143863}
Linking options:
  • https://www.mathnet.ru/eng/mzm4128
  • https://doi.org/10.4213/mzm4128
  • https://www.mathnet.ru/eng/mzm/v85/i3/p408
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024