Abstract:
Suppose that V is a module over a ring R. The module V is called a unique addition module (UA-module) if it is not possible to change the addition on the set V without changing the action of R on V. In this paper, we find Abelian groups that are UA-modules over their endomorphism ring.
Keywords:
unique addition module, Abelian group, torsion-free group, quasidecomposition of a group, distributive module, irreducible module, uniserial module, endomorphism ring.
Citation:
D. S. Chistyakov, “Abelian Groups as UA-Modules over Their Endomorphism Ring”, Mat. Zametki, 91:6 (2012), 934–941; Math. Notes, 91:6 (2012), 878–884
\Bibitem{Chi12}
\by D.~S.~Chistyakov
\paper Abelian Groups as $\mathrm{UA}$-Modules over Their Endomorphism Ring
\jour Mat. Zametki
\yr 2012
\vol 91
\issue 6
\pages 934--941
\mathnet{http://mi.mathnet.ru/mzm4125}
\crossref{https://doi.org/10.4213/mzm4125}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201531}
\elib{https://elibrary.ru/item.asp?id=20731559}
\transl
\jour Math. Notes
\yr 2012
\vol 91
\issue 6
\pages 878--884
\crossref{https://doi.org/10.1134/S0001434612050355}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305984400035}
\elib{https://elibrary.ru/item.asp?id=24952886}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864192262}
Linking options:
https://www.mathnet.ru/eng/mzm4125
https://doi.org/10.4213/mzm4125
https://www.mathnet.ru/eng/mzm/v91/i6/p934
This publication is cited in the following 6 articles:
D. S. Chistyakov, “Odnorodnye otobrazheniya smeshannykh modulei”, Chebyshevskii sb., 18:2 (2017), 256–266
D. S. Chistyakov, “On the $\mathrm{UA}$-properties of Abelian $sp$-groups and their endomorphism rings”, J. Math. Sci., 233:5 (2018), 749–754
D. S. Chistyakov, “Separable torsion-free modules with $UA$-rings of endomorphisms”, Russian Math. (Iz. VUZ), 59:6 (2015), 43–48
D. S. Chistyakov, “On homogeneous mappings of finitely presented modules over the ring of polyadic numbers”, J. Math. Sci., 233:1 (2018), 152–156
D. S. Chistyakov, “Homogeneous mappings of Abelian groups”, Russian Math. (Iz. VUZ), 58:2 (2014), 51–57
D. S. Chistyakov, “Abelevy gruppy s UA-koltsom endomorfizmov i ikh odnorodnye otobrazheniya”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2014, no. 4(30), 49–56