Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 82, Issue 5, Pages 756–769
DOI: https://doi.org/10.4213/mzm4087
(Mi mzm4087)
 

This article is cited in 12 scientific papers (total in 12 papers)

A Compactification of the Moduli Variety of Stable Vector 2-Bundles on a Surface in the Hilbert Scheme

N. V. Timofeeva

Yaroslavl State Pedagogical University named after K. D. Ushinsky
References:
Abstract: A new compactification of the variety of moduli of stable vector 2-bundles with Chern classes $c_1$ and $c_2$ is constructed for the case in which the universal family of stable sheaves with given values of invariants is defined and there are no strictly semistable sheaves. The compactification is a subvariety in the Hilbert scheme of subschemes of a Grassmann manifold with fixed Hilbert polynomial; it is obtained from the variety of bundle moduli by adding points corresponding to locally free sheaves on surfaces which are modifications of the initial surface. Moreover, a morphism from the new compactification of the moduli space to its Gieseker–Maruyama compactification is constructed.
Keywords: compactification, moduli space, projective surface, Gieseker stable vector bundle, stable sheaf, Hilbert scheme, universal scheme, Grassmann manifold.
Received: 27.04.2006
Revised: 28.05.2007
English version:
Mathematical Notes, 2007, Volume 82, Issue 5, Pages 677–690
DOI: https://doi.org/10.1134/S0001434607110107
Bibliographic databases:
UDC: 512.7
Language: Russian
Citation: N. V. Timofeeva, “A Compactification of the Moduli Variety of Stable Vector 2-Bundles on a Surface in the Hilbert Scheme”, Mat. Zametki, 82:5 (2007), 756–769; Math. Notes, 82:5 (2007), 677–690
Citation in format AMSBIB
\Bibitem{Tim07}
\by N.~V.~Timofeeva
\paper A Compactification of the Moduli Variety of Stable Vector 2-Bundles on a Surface in the Hilbert Scheme
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 5
\pages 756--769
\mathnet{http://mi.mathnet.ru/mzm4087}
\crossref{https://doi.org/10.4213/mzm4087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2399954}
\zmath{https://zbmath.org/?q=an:1167.14028}
\elib{https://elibrary.ru/item.asp?id=12844052}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 5
\pages 677--690
\crossref{https://doi.org/10.1134/S0001434607110107}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252128700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38349053285}
Linking options:
  • https://www.mathnet.ru/eng/mzm4087
  • https://doi.org/10.4213/mzm4087
  • https://www.mathnet.ru/eng/mzm/v82/i5/p756
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:377
    Full-text PDF :195
    References:45
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024