|
This article is cited in 1 scientific paper (total in 1 paper)
On the Asymptotics of the Rows of the Padé Table of Analytic Functions with Logarithmic Branch Points
A. P. Starovoitov, N. A. Starovoitova Francisk Skorina Gomel State University
Abstract:
For the functions $f(z)=\sum_{n=0}^\infty z^{l_n}/a_n$, where $l_n$ and $a_n$ are arithmetic progressions and their Padé approximants $\pi_{n,m}(z;f)$, we establish an asymptotics of the decrease of the difference $f(z)-\pi_{n,m}(z;f)$ for the case in which $z\in D=\{z:|z|<1\}$, $m$ is fixed, and $n\to\infty$. In particular, we obtain proximate orders of decrease of best uniform rational approximations to the functions $\ln(1-z)$ and $\operatorname{arctan}z$ in the disk $D_q=\{z:|z|\le q<1\}$.
Keywords:
Padé approximant, Padé table, analytic function, logarithmic branch point, arithmetic progression, Hadamard determinant, Vandermonde determinant.
Received: 11.05.2007
Citation:
A. P. Starovoitov, N. A. Starovoitova, “On the Asymptotics of the Rows of the Padé Table of Analytic Functions with Logarithmic Branch Points”, Mat. Zametki, 84:3 (2008), 409–419; Math. Notes, 84:3 (2008), 379–388
Linking options:
https://www.mathnet.ru/eng/mzm4049https://doi.org/10.4213/mzm4049 https://www.mathnet.ru/eng/mzm/v84/i3/p409
|
|