Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 83, Issue 5, Pages 722–740
DOI: https://doi.org/10.4213/mzm4046
(Mi mzm4046)
 

This article is cited in 5 scientific papers (total in 5 papers)

Convergence of Biorthogonal Series in the System of Contractions and Translations of Functions in the Spaces $L^p[0,1]$

P. A. Terekhin

Saratov State University named after N. G. Chernyshevsky
Full-text PDF (600 kB) Citations (5)
References:
Abstract: We obtain conditions for the convergence in the spaces $L^p[0,1]$, $1\le p<\infty$, of biorthogonal series of the form
$$ f=\sum_{n=0}^\infty(f,\psi_n)\varphi_n $$
in the system $\{\varphi_n\}_{n\ge 0}$ of contractions and translations of a function $\varphi$. The proposed conditions are stated with regard to the fact that the functions belong to the space $\mathfrak L^p$ of absolutely bundle-convergent Fourier–Haar series with norm
$$ \|f\|_p^\ast=|(f,\chi_0)| +\sum_{k=0}^\infty 2^{k(1/2-1/p)} \biggl(\mspace{2mu}\sum_{n=2^k}^{2^{k+1}-1} |(f,\chi_n)|^p\biggr)^{1/p}, $$
where $(f,\chi_n)$, $n=0,1,\dots$, are the Fourier coefficients of a function $f\in L^p[0,1]$ in the Haar system $\{\chi_n\}_{n\ge 0}$. In particular, we present conditions for the system $\{\varphi_n\}_{n\ge 0}$ of contractions and translations of a function $\varphi$ to be a basis for the spaces $L^p[0,1]$ and $\mathfrak L^p$.
Keywords: biorthogonal series, system of contractions and translations of a function, the space $L^p[0,1]$, bundle convergence of Fourier–Haar series, Haar function, wavelet theory.
Received: 19.04.2007
Revised: 11.11.2007
English version:
Mathematical Notes, 2008, Volume 83, Issue 5, Pages 657–674
DOI: https://doi.org/10.1134/S000143460805009X
Bibliographic databases:
UDC: 517.51
Language: Russian
Citation: P. A. Terekhin, “Convergence of Biorthogonal Series in the System of Contractions and Translations of Functions in the Spaces $L^p[0,1]$”, Mat. Zametki, 83:5 (2008), 722–740; Math. Notes, 83:5 (2008), 657–674
Citation in format AMSBIB
\Bibitem{Ter08}
\by P.~A.~Terekhin
\paper Convergence of Biorthogonal Series in the System of Contractions and Translations of Functions in the Spaces
$L^p[0,1]$
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 5
\pages 722--740
\mathnet{http://mi.mathnet.ru/mzm4046}
\crossref{https://doi.org/10.4213/mzm4046}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2451361}
\zmath{https://zbmath.org/?q=an:1159.42018}
\elib{https://elibrary.ru/item.asp?id=11566606}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 5
\pages 657--674
\crossref{https://doi.org/10.1134/S000143460805009X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257399900009}
\elib{https://elibrary.ru/item.asp?id=13571837}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-46749109654}
Linking options:
  • https://www.mathnet.ru/eng/mzm4046
  • https://doi.org/10.4213/mzm4046
  • https://www.mathnet.ru/eng/mzm/v83/i5/p722
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:696
    Full-text PDF :256
    References:81
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024