Abstract:
This paper is devoted to the study of the solvability of the second mixed problem in a noncylindrical domain for the nonstationary equation
$$
\operatorname {div}(k(x)\operatorname {grad}u_t)-c(x)u_t-b(x)u(x,t)=f(x,t),
$$
called the pseudoparabolic equation. We prove existence and uniqueness theorems for the solution in the case of contracting (as time $t$ increases) domains.
Citation:
M. V. Ivanova, V. I. Ushakov, “The Second Boundary-Value Problem for Pseudoparabolic Equations in Noncylindrical Domains”, Mat. Zametki, 72:1 (2002), 48–53; Math. Notes, 72:1 (2002), 43–47
\Bibitem{IvaUsh02}
\by M.~V.~Ivanova, V.~I.~Ushakov
\paper The Second Boundary-Value Problem for Pseudoparabolic Equations in Noncylindrical Domains
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 1
\pages 48--53
\mathnet{http://mi.mathnet.ru/mzm403}
\crossref{https://doi.org/10.4213/mzm403}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1942581}
\zmath{https://zbmath.org/?q=an:1028.35085}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 1
\pages 43--47
\crossref{https://doi.org/10.1023/A:1019812920385}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178299100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141737023}
Linking options:
https://www.mathnet.ru/eng/mzm403
https://doi.org/10.4213/mzm403
https://www.mathnet.ru/eng/mzm/v72/i1/p48
This publication is cited in the following 4 articles:
Abdelmalek Berrah, Arezki Kheloufi, “Lp-regularity results for parabolic equations with robin type boundary conditions in non-rectangular domains”, Filomat, 38:11 (2024), 3891
Beshtokov M.Kh., “A Numerical Method For Solving the Second Initial-Boundary Value Problem For a Multidimensional Third-Order Pseudoparabolic Equation”, Vestn. Udmurt. Univ.-Mat. Mekh. Kompyuternye Nauk., 31:3 (2021), 384–408
Popoviciu N., Tuba M., “The Solution of Second Mixed Problem for Vibrating Finite String with Nonzero Conditions in Both Heads by Using the Green Function Method”, Proceedings of the American Conference on Applied Mathematics: Recent Advances in Applied Mathematics, Mathematics and Computers in Science and Engineering, eds. Lagakos S., Perlovsky L., Jha M., Covaci B., Zaharim A., Mastorakis N., World Scientific and Engineering Acad and Soc, 2009, 217–221