Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 86, Issue 2, Pages 280–289
DOI: https://doi.org/10.4213/mzm4007
(Mi mzm4007)
 

On the Relation between Topological Entropy and Entropy Dimension

P. S. Saltykov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: For the Lipschitz mapping of a metric compact set into itself, there is a classical upper bound on topological entropy, namely, the product of the entropy dimension of the compact set by the logarithm of the Lipschitz constant. The Ghys conjecture is that, by varying the metric, one can approximate the upper bound arbitrarily closely to the exact value of the topological entropy. In the present paper, we obtain a criterion for the validity of the Ghys conjecture for an individual mapping. Applying this criterion, we prove the Ghys conjecture for hyperbolic mappings.
Keywords: topological entropy, topological dimension, Lipschitz mapping, Ghys conjecture, hyperbolic mapping, hyperbolic homeomorphism.
Received: 24.10.2006
Revised: 12.05.2008
English version:
Mathematical Notes, 2009, Volume 86, Issue 2, Pages 255–263
DOI: https://doi.org/10.1134/S000143460907027X
Bibliographic databases:
UDC: 517
Language: Russian
Citation: P. S. Saltykov, “On the Relation between Topological Entropy and Entropy Dimension”, Mat. Zametki, 86:2 (2009), 280–289; Math. Notes, 86:2 (2009), 255–263
Citation in format AMSBIB
\Bibitem{Sal09}
\by P.~S.~Saltykov
\paper On the Relation between Topological Entropy and Entropy Dimension
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 2
\pages 280--289
\mathnet{http://mi.mathnet.ru/mzm4007}
\crossref{https://doi.org/10.4213/mzm4007}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2584561}
\zmath{https://zbmath.org/?q=an:1189.37015}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 2
\pages 255--263
\crossref{https://doi.org/10.1134/S000143460907027X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269660400027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76249102247}
Linking options:
  • https://www.mathnet.ru/eng/mzm4007
  • https://doi.org/10.4213/mzm4007
  • https://www.mathnet.ru/eng/mzm/v86/i2/p280
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:424
    Full-text PDF :198
    References:50
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024