Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 3, Pages 334–347
DOI: https://doi.org/10.4213/mzm4000
(Mi mzm4000)
 

This article is cited in 6 scientific papers (total in 6 papers)

Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence

I. L. Bloshanskii, O. V. Lifantseva

Moscow State Region University
Full-text PDF (618 kB) Citations (6)
References:
Abstract: In this paper, we obtain the structural and geometric characteristics of some subsets of $\mathbb{T}^N=[-\pi,\pi]^N$ (of positive measure), on which, for the classes $L_p(\mathbb{T}^N)$, $p>1$, where $N\ge 3$, weak generalized localization for multiple trigonometric Fourier series is valid almost everywhere, provided that the rectangular partial sums $S_n(x;f)$  ($x\in\mathbb{T}^N$, $f\in L_p$) of these series have a “number” $n=(n_1,\dots,n_N)\in\mathbb Z_{+}^{N}$ such that some components $n_j$ are elements of lacunary sequences. For $N=3$, similar studies are carried out for generalized localization almost everywhere.
Keywords: multiple Fourier series, weak generalized localization, generalized localization, partial sum, lacunary sequence, Hölder's inequality, Orlicz class.
Received: 14.06.2007
English version:
Mathematical Notes, 2008, Volume 84, Issue 3, Pages 314–327
DOI: https://doi.org/10.1134/S0001434608090022
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: I. L. Bloshanskii, O. V. Lifantseva, “Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence”, Mat. Zametki, 84:3 (2008), 334–347; Math. Notes, 84:3 (2008), 314–327
Citation in format AMSBIB
\Bibitem{BloLif08}
\by I.~L.~Bloshanskii, O.~V.~Lifantseva
\paper Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 3
\pages 334--347
\mathnet{http://mi.mathnet.ru/mzm4000}
\crossref{https://doi.org/10.4213/mzm4000}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2473751}
\zmath{https://zbmath.org/?q=an:1178.42010}
\elib{https://elibrary.ru/item.asp?id=11161438}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 3
\pages 314--327
\crossref{https://doi.org/10.1134/S0001434608090022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260516700002}
\elib{https://elibrary.ru/item.asp?id=13587964}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-55149091863}
Linking options:
  • https://www.mathnet.ru/eng/mzm4000
  • https://doi.org/10.4213/mzm4000
  • https://www.mathnet.ru/eng/mzm/v84/i3/p334
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:572
    Full-text PDF :232
    References:45
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024