Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1999, Volume 66, Issue 4, Pages 540–550
DOI: https://doi.org/10.4213/mzm3987
(Mi mzm3987)
 

Entire functions, analytic continuation, and the fractional parts of a linear function

A. I. Pavlov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: The main result of the paper is as follows.
Theorem. Suppose that $G(z)$ is an entire function satisfying the following conditions:
1) the Taylor coefficients of the function $G(z)$ are nonnegative;
2) for some fixed $C>0$ and $A>0$ and for $|z|>R_0$, the following inequality holds:
$$ |G(z)|<\exp\biggl(C\frac{|z|}{\ln^A|z|}\biggr). $$
{\it Further, suppose that for some fixed $\alpha>0$ the deviation $D_N$ of the sequence $x_n=\{\alpha n\}$, $n=1,2,\dots$, as $N\to\infty$ has the estimate $D_N=O(\ln^BN/N)$. Then if the function $G(z)$ is not an identical constant and the inequality $B+1<A$ holds, then the power series $\sum_{n=0}^\infty G([\alpha n])z^n$ converging in the disk $|z|<1$ cannot be analytically continued to the region $|z|>1$ across any arc of the circle $|z|=1$.}
Received: 03.12.1998
English version:
Mathematical Notes, 1999, Volume 66, Issue 4, Pages 442–450
DOI: https://doi.org/10.1007/BF02679094
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. I. Pavlov, “Entire functions, analytic continuation, and the fractional parts of a linear function”, Mat. Zametki, 66:4 (1999), 540–550; Math. Notes, 66:4 (1999), 442–450
Citation in format AMSBIB
\Bibitem{Pav99}
\by A.~I.~Pavlov
\paper Entire functions, analytic continuation, and the fractional parts of a~linear function
\jour Mat. Zametki
\yr 1999
\vol 66
\issue 4
\pages 540--550
\mathnet{http://mi.mathnet.ru/mzm3987}
\crossref{https://doi.org/10.4213/mzm3987}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1747082}
\elib{https://elibrary.ru/item.asp?id=13306018}
\transl
\jour Math. Notes
\yr 1999
\vol 66
\issue 4
\pages 442--450
\crossref{https://doi.org/10.1007/BF02679094}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000086188000027}
Linking options:
  • https://www.mathnet.ru/eng/mzm3987
  • https://doi.org/10.4213/mzm3987
  • https://www.mathnet.ru/eng/mzm/v66/i4/p540
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024