Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1993, Volume 53, Issue 1, Pages 89–94 (Mi mzm3923)  

This article is cited in 15 scientific papers (total in 15 papers)

Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations

A. I. Prilepko, A. B. Kostin

Moscow Engineering Physics Institute (State University)
Abstract: In a Banach space $E$ with reproducing cone $E_+$ consider the operator $B$ defined by the formula $Bf=l(uu_t)$, where $u(t)$ is a solution of the Cauchy problem $u_t-Au=\varPhi (t)f$, $t\in [0,T]$, $u(0)=0$, and the expression $l(u)$ has one of the following forms: $l(u)=u(t_1)$, $0<t_1\leqslant T_s$, or $l(u)=\int _0^T\nu (\tau)u(\tau )\,d\tau$ with $\nu\in L_1(0,T)$, $\nu\geqslant0$ on $[0,T]$. We prove the estimate $r(B)<1$.
We obtain this estimate under the conditions that the $C_0$-semigroup generated by the operator $A$ is positive, compact, and of negative exponential type, and the operator function $\varPhi\in C^1([0,T];\mathscr L (E))$ is such that $l(\varPhi)=I$ and $\varPhi(t)\geqslant0$, $\varPhi'(t)\geqslant0$ on $[0,t]$. Correct solvability of the corresponding inverse problem follows from this estimate.
Received: 28.02.1992
English version:
Mathematical Notes, 1993, Volume 53, Issue 1, Pages 63–66
DOI: https://doi.org/10.1007/BF01208524
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: A. I. Prilepko, A. B. Kostin, “Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations”, Mat. Zametki, 53:1 (1993), 89–94; Math. Notes, 53:1 (1993), 63–66
Citation in format AMSBIB
\Bibitem{PriKos93}
\by A.~I.~Prilepko, A.~B.~Kostin
\paper Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations
\jour Mat. Zametki
\yr 1993
\vol 53
\issue 1
\pages 89--94
\mathnet{http://mi.mathnet.ru/mzm3923}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1215162}
\zmath{https://zbmath.org/?q=an:0822.47004}
\transl
\jour Math. Notes
\yr 1993
\vol 53
\issue 1
\pages 63--66
\crossref{https://doi.org/10.1007/BF01208524}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MY10400009}
Linking options:
  • https://www.mathnet.ru/eng/mzm3923
  • https://www.mathnet.ru/eng/mzm/v53/i1/p89
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:517
    Full-text PDF :150
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024