Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1993, Volume 53, Issue 1, Pages 89–94 (Mi mzm3923)  

This article is cited in 15 scientific papers (total in 15 papers)

Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations

A. I. Prilepko, A. B. Kostin

Moscow Engineering Physics Institute (State University)
Abstract: In a Banach space $E$ with reproducing cone $E_+$ consider the operator $B$ defined by the formula $Bf=l(uu_t)$, where $u(t)$ is a solution of the Cauchy problem $u_t-Au=\varPhi (t)f$, $t\in [0,T]$, $u(0)=0$, and the expression $l(u)$ has one of the following forms: $l(u)=u(t_1)$, $0<t_1\leqslant T_s$, or $l(u)=\int _0^T\nu (\tau)u(\tau )\,d\tau$ with $\nu\in L_1(0,T)$, $\nu\geqslant0$ on $[0,T]$. We prove the estimate $r(B)<1$.
We obtain this estimate under the conditions that the $C_0$-semigroup generated by the operator $A$ is positive, compact, and of negative exponential type, and the operator function $\varPhi\in C^1([0,T];\mathscr L (E))$ is such that $l(\varPhi)=I$ and $\varPhi(t)\geqslant0$, $\varPhi'(t)\geqslant0$ on $[0,t]$. Correct solvability of the corresponding inverse problem follows from this estimate.
Received: 28.02.1992
English version:
Mathematical Notes, 1993, Volume 53, Issue 1, Pages 63–66
DOI: https://doi.org/10.1007/BF01208524
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: A. I. Prilepko, A. B. Kostin, “Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations”, Mat. Zametki, 53:1 (1993), 89–94; Math. Notes, 53:1 (1993), 63–66
Citation in format AMSBIB
\Bibitem{PriKos93}
\by A.~I.~Prilepko, A.~B.~Kostin
\paper Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations
\jour Mat. Zametki
\yr 1993
\vol 53
\issue 1
\pages 89--94
\mathnet{http://mi.mathnet.ru/mzm3923}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1215162}
\zmath{https://zbmath.org/?q=an:0822.47004}
\transl
\jour Math. Notes
\yr 1993
\vol 53
\issue 1
\pages 63--66
\crossref{https://doi.org/10.1007/BF01208524}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MY10400009}
Linking options:
  • https://www.mathnet.ru/eng/mzm3923
  • https://www.mathnet.ru/eng/mzm/v53/i1/p89
  • This publication is cited in the following 15 articles:
    1. Kamil Basirovich Sabitov, Stanislav Nikolaevich Sidorov, “Inverse problems for equations of a mixed parabolic-hyperbolic type with power degeneration in finding the right-hand parts that depend on time”, Journal of Inverse and Ill-posed Problems, 31:6 (2023), 823  crossref
    2. V. L. Kamynin, “The Inverse Problem of Recovering the Source Function in a Multidimensional Nonuniformly Parabolic Equation”, Math. Notes, 112:3 (2022), 412–423  mathnet  crossref  crossref  mathscinet
    3. S. N. Sidorov, “Inverse Problems for a Three-Dimensional Equation of Parabolic-Hyperbolic Type in Finding Time-Dependent Factors of the Right-Hand Sides”, Lobachevskii J Math, 43:12 (2022), 3641  crossref
    4. Andrey B. Kostin, Sergey I. Piskarev, “Inverse source problem for the abstract fractional differential equation”, Journal of Inverse and Ill-posed Problems, 29:2 (2021), 267  crossref
    5. S. N. Sidorov, “Obratnye zadachi dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa s vyrozhdayuscheisya parabolicheskoi chastyu”, Sib. elektron. matem. izv., 16 (2019), 144–157  mathnet  crossref
    6. S. N. Sidorov, “Inverse problems for a degenerate mixed parabolic-hyperbolic equation on finding time-depending factors in right hand sides”, Ufa Math. J., 11:1 (2019), 75–89  mathnet  crossref  isi
    7. Ling De Su, V. I. Vasil'ev, “Identification of the spacewise dependent right-hand side in one-dimensional parabolic equation”, J. Phys.: Conf. Ser., 1392:1 (2019), 012087  crossref
    8. A. I. Prilepko, V. L. Kamynin, A. B. Kostin, “Inverse Source Problem For Parabolic Equation With the Condition of Integral Observation in Time”, J. Inverse Ill-Posed Probl., 26:4 (2018), 523–539  crossref  isi
    9. Vabishchevich P.N., “Iterative Computational Identification of a Space-Wise Dependent Source in Parabolic Equation”, Inverse Probl. Sci. Eng., 25:8 (2017), 1168–1190  crossref  isi
    10. A. B. Kostin, “Counterexamples in inverse problems for parabolic, elliptic, and hyperbolic equations”, Comput. Math. Math. Phys., 54:5 (2014), 779–792  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    11. A. B. Kostin, “The inverse problem of recovering the source in a parabolic equation under a condition of nonlocal observation”, Sb. Math., 204:10 (2013), 1391–1434  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    12. Kostin A.B., “Kriterii korrektnosti obratnoi zadachi dlya parabolicheskogo uravneniya s nelokalnym usloviem nablyudeniya”, Vestnik natsionalnogo issledovatelskogo yadernogo universiteta MIFI, 1:2 (2012), 200–200  elib
    13. Davide Guidetti, “Determining the Source Term in an Abstract Parabolic Problem From a Time Integral of the Solution”, Mediterr. J. Math., 9:4 (2012), 611  crossref
    14. Kozhanov A.I., Safiullova R.R., “Linear inverse problems for parabolic and hyperbolic equations”, J Inverse Ill Posed Probl, 18:1 (2010), 1–24  crossref  isi
    15. D. S. Tkachenko, “On an Inverse Problem for a Parabolic Equation”, Math. Notes, 75:5 (2004), 676–689  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:557
    Full-text PDF :159
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025