Abstract:
In a Banach space $E$ with reproducing cone $E_+$ consider the operator $B$ defined by the formula $Bf=l(uu_t)$, where $u(t)$ is a solution of the Cauchy problem $u_t-Au=\varPhi (t)f$, $t\in [0,T]$, $u(0)=0$, and the expression $l(u)$ has one of the following forms: $l(u)=u(t_1)$, $0<t_1\leqslant T_s$, or $l(u)=\int _0^T\nu (\tau)u(\tau )\,d\tau$ with $\nu\in L_1(0,T)$, $\nu\geqslant0$ on $[0,T]$. We prove the estimate $r(B)<1$.
We obtain this estimate under the conditions that the $C_0$-semigroup generated by the operator $A$ is positive, compact, and of negative exponential type, and the operator function $\varPhi\in C^1([0,T];\mathscr L (E))$ is such that $l(\varPhi)=I$ and $\varPhi(t)\geqslant0$, $\varPhi'(t)\geqslant0$ on $[0,t]$. Correct solvability of the corresponding inverse problem follows from this estimate.
Citation:
A. I. Prilepko, A. B. Kostin, “Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations”, Mat. Zametki, 53:1 (1993), 89–94; Math. Notes, 53:1 (1993), 63–66
\Bibitem{PriKos93}
\by A.~I.~Prilepko, A.~B.~Kostin
\paper Estimation of the spectral radius of an operator and the solvability of inverse problems for evolution equations
\jour Mat. Zametki
\yr 1993
\vol 53
\issue 1
\pages 89--94
\mathnet{http://mi.mathnet.ru/mzm3923}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1215162}
\zmath{https://zbmath.org/?q=an:0822.47004}
\transl
\jour Math. Notes
\yr 1993
\vol 53
\issue 1
\pages 63--66
\crossref{https://doi.org/10.1007/BF01208524}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MY10400009}
Linking options:
https://www.mathnet.ru/eng/mzm3923
https://www.mathnet.ru/eng/mzm/v53/i1/p89
This publication is cited in the following 15 articles:
Kamil Basirovich Sabitov, Stanislav Nikolaevich Sidorov, “Inverse problems for equations of a mixed parabolic-hyperbolic type with power degeneration in finding the right-hand parts that depend on time”, Journal of Inverse and Ill-posed Problems, 31:6 (2023), 823
V. L. Kamynin, “The Inverse Problem of Recovering the Source Function in a Multidimensional Nonuniformly Parabolic Equation”, Math. Notes, 112:3 (2022), 412–423
S. N. Sidorov, “Inverse Problems for a Three-Dimensional Equation of Parabolic-Hyperbolic Type in Finding Time-Dependent Factors of the Right-Hand Sides”, Lobachevskii J Math, 43:12 (2022), 3641
Andrey B. Kostin, Sergey I. Piskarev, “Inverse source problem for the abstract fractional differential equation”, Journal of Inverse and Ill-posed Problems, 29:2 (2021), 267
S. N. Sidorov, “Obratnye zadachi dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa s vyrozhdayuscheisya parabolicheskoi chastyu”, Sib. elektron. matem. izv., 16 (2019), 144–157
S. N. Sidorov, “Inverse problems for a degenerate mixed parabolic-hyperbolic equation on finding time-depending factors in right hand sides”, Ufa Math. J., 11:1 (2019), 75–89
Ling De Su, V. I. Vasil'ev, “Identification of the spacewise dependent right-hand side in one-dimensional parabolic equation”, J. Phys.: Conf. Ser., 1392:1 (2019), 012087
A. I. Prilepko, V. L. Kamynin, A. B. Kostin, “Inverse Source Problem For Parabolic Equation With the Condition of Integral Observation in Time”, J. Inverse Ill-Posed Probl., 26:4 (2018), 523–539
Vabishchevich P.N., “Iterative Computational Identification of a Space-Wise Dependent Source in Parabolic Equation”, Inverse Probl. Sci. Eng., 25:8 (2017), 1168–1190
A. B. Kostin, “Counterexamples in inverse problems for parabolic, elliptic, and hyperbolic equations”, Comput. Math. Math. Phys., 54:5 (2014), 779–792
A. B. Kostin, “The inverse problem of recovering the source in a parabolic equation under a condition of nonlocal observation”, Sb. Math., 204:10 (2013), 1391–1434
Davide Guidetti, “Determining the Source Term in an Abstract Parabolic Problem From a Time Integral of the Solution”, Mediterr. J. Math., 9:4 (2012), 611
Kozhanov A.I., Safiullova R.R., “Linear inverse problems for parabolic and hyperbolic equations”, J Inverse Ill Posed Probl, 18:1 (2010), 1–24
D. S. Tkachenko, “On an Inverse Problem for a Parabolic Equation”, Math. Notes, 75:5 (2004), 676–689