Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2002, Volume 71, Issue 6, Pages 832–844
DOI: https://doi.org/10.4213/mzm388
(Mi mzm388)
 

This article is cited in 5 scientific papers (total in 5 papers)

Algebraic Relations between the Hypergeometric E-Function and Its Derivatives

V. Kh. Salikhov, G. G. Viskina

Bryansk Institute of Transport Engineering
Full-text PDF (250 kB) Citations (5)
References:
Abstract: In this paper, we consider the generalized hypergeometric function
$$ \sum _{n=0}^\infty \frac 1{(\lambda _1+1)_n\dotsb(\lambda _t+1)_n} \biggl (\frac zt\biggr )^{tn}, \qquad\lambda _1,\dots,\lambda _t\in\mathbb Q\setminus\{-1,-2,\dots\}, $$
where $t$ is an even number, and its derivatives up to the order $t- 1$ inclusive. In the case of algebraic dependence between these functions over $\mathbb C(z)$, a complete structure of algebraic relations between them is given.
Received: 08.07.2001
English version:
Mathematical Notes, 2002, Volume 71, Issue 6, Pages 761–772
DOI: https://doi.org/10.1023/A:1015864711107
Bibliographic databases:
UDC: 511.36
Language: Russian
Citation: V. Kh. Salikhov, G. G. Viskina, “Algebraic Relations between the Hypergeometric E-Function and Its Derivatives”, Mat. Zametki, 71:6 (2002), 832–844; Math. Notes, 71:6 (2002), 761–772
Citation in format AMSBIB
\Bibitem{SalVis02}
\by V.~Kh.~Salikhov, G.~G.~Viskina
\paper Algebraic Relations between the Hypergeometric E-Function and Its Derivatives
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 6
\pages 832--844
\mathnet{http://mi.mathnet.ru/mzm388}
\crossref{https://doi.org/10.4213/mzm388}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1933104}
\zmath{https://zbmath.org/?q=an:1021.33010}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 6
\pages 761--772
\crossref{https://doi.org/10.1023/A:1015864711107}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000176477200021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141737008}
Linking options:
  • https://www.mathnet.ru/eng/mzm388
  • https://doi.org/10.4213/mzm388
  • https://www.mathnet.ru/eng/mzm/v71/i6/p832
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024